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Abstract

Ladner’s theorem states that if P 6= NP, then there are problems
in NP that are neither in P nor NP-complete. Csp(Γ) is a class
of problems containing many well-studied combinatorial problems in
NP. Csp(Γ) problems are of the form: given a set of variables con-
strained by a set of constraints from the set of allowed constraints Γ,
is there an assignment to the variables satisfying all constraints? A
famous, and in the light of Ladner’s theorem, surprising conjecture
states that there is a complexity dichotomy for Csp(Γ); that is, for
any fixed finite Γ, the Csp(Γ) problem is either in P or NP-complete.

In this thesis we focus on problems expressible in the Csp(Γ)
framework with different computational goals, such as: counting the
number of solutions, deciding whether two sets of constraints have
the same set of solutions, deciding whether all minimal solutions of a
set of constraints satisfies an additional constraint etc. By doing so,
we capture a host of problems ranging from fundamental problems
in nonmonotonic logics, such as abduction and circumscription, to
problems regarding the equivalence of systems of linear equations.
For several of these classes of problem, we are able to give complete
complexity classifications and rule out the possibility of problems of
intermediate complexity. For example, we prove that the inference
problem in propositional variable circumscription, parameterized by
the set of allowed constraints Γ, is either in P, coNP-complete, or
ΠP

2
-complete. As a by-product of these classifications, new tractable

cases and hardness results for well-studied problems are discovered.

The techniques we use to obtain these complexity classifications

are to a large extent based on connections between algebraic clone

theory and the complexity of Csp(Γ). We are able to extend these

powerful algebraic techniques to several of the problems studied in

this thesis. Hence, this thesis also contributes to the understanding

of when these algebraic techniques are applicable and not.
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Introduction

The research area Theoretical Computer Science can be defined
as follows1: Theoretical Computer Science (TCS) studies the in-
herent powers and limitations of computation, that is broadly de-
fined to include both current and future, man-made and naturally
arising computing phenomena.

To be slightly more concrete and to get a feeling for what is
meant, let us take an example. Suppose I ask you for help and
give you two numbers, say 134578 and 426339, and then ask you
to either compute their sum 134578 + 426339 or their product
134578 · 426339 (the choice is yours, and no, you are not allowed
to use a calculator). What would you choose?

My guess is that you would choose to compute the sum be-
cause you are lazy and probably find additions easier to compute
than multiplications. Anyway, let us assume that you find doing
additions of large numbers (by hand) easier than doing multi-
plications of large numbers (by hand). Have you ever thought
about why?

Is it the case that there is some inherent property of the
computational problem of multiplication that makes it harder
than the problem of addition? How do you know that there is no
(yet to be discovered) method of doing multiplication as easily
as addition?

The subfield of TCS that studies these types of questions is
called complexity theory. One of the most important goals in this

1Actually, it is defined exactly like this at www.theorymatters.org.

1
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research area is to understand which computational problems are
easy to solve and which are hard to solve, and of course, why. In
this thesis we use the framework of complexity theory to try to
classify large classes of computational problems according to the
effort (actually, time) required for solving them.

Intuitions about Complexity Theory

In this section we try to give some intuitions about complexity
theory. For a more formal treatment, please consult a standard
textbook on complexity theory such as [43].

Suppose we want to solve the following task: given a map
with n countries, the task is to decide whether or not the coun-
tries can be colored by two colors such that no two countries
sharing a border are colored by the same color. We want our
solution procedure to have the following desirable property: as
the number n of countries is increased, the time required for
solving the problem should not grow dramatically. More exactly,
the time required for solving the problem should not grow faster
than a polynomial in n. If such a solution procedure exists we say
that the problem is tractable (or solvable in polynomial time).
The class of all decision problems having such polynomial time
solution procedures is exactly the complexity class P.

Here is a solution procedure for the problem of deciding whe-
ther a map can be properly colored using two colors. Color one
country (which one does not matter). Then color its neighbors
with the other color. Color their (uncolored) neighbors with the
first color, and so on until you have either finished coloring the
whole map (demonstrating that the map can be colored by two
colors), or reach a position where two neighbouring countries
are colored by the same color (in which case the map cannot be
properly colored by just using two colors).

By making the reasonable assumption that the time required
for carrying out this solution procedure corresponds to the num-
ber of times you have to color a country, it is obvious that the

2
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time required to carry out the procedure does not grow faster
than a polynomial in n. Hence, the problem of deciding whether
or not a map can be colored by two colors is in P.

Now, let us alter the map coloring problem slightly by in-
stead asking if a given map can be properly colored by three
colors. As it turns out, no one has been able to give a solution
procedure running in polynomial time for this problem. In fact,
it is strongly believed that the problem of properly coloring a
map by three colors is intractable (computationally hard), that
is, not solvable in polynomial time. The main embarrassment of
computational complexity theory is that it is incredibly bad at
proving that problems are computationally hard, e.g., not solv-
able in polynomial time. The main reason is that, to prove that
a problem is computationally hard, all possible efficient solutions
procedures must be ruled out.

Again, consider the problem of deciding if a map can be prop-
erly colored with three colors; how do you rule out the possibil-
ity that in the future, someone/something, somewhere, comes
up with a polynomial time solution procedure for solving the
problem? Incidentally, the problem of deciding if a map can be
properly colored with four colors can be solved in polynomial
time as a result of the famous Four Color Theorem2.

The reason why the problem of deciding if a map can be
properly colored with three colors is believed to be hard, is that
it is among the hardest problems in the complexity class NP.
A problem is in the complexity class NP if the correctness of
solutions can be verified in polynomial time. For example, given
a colored map, it is easy to check in polynomial time that no
more than three colors are used and that neighbouring countries
are colored with different colors. Hence, the problem of deciding
if a map can be properly colored with three colors is in NP.

Obviously, if a problem can be solved in polynomial time,
then solutions can also be verified in polynomial time. Hence,

2Every map can be properly colored using four colors [3].

3
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every problem in the complexity class P is also in NP. Although
it is strongly believed that P 6= NP, no one has been able to
prove this (despite the fact that a proof carries a monetary award
of $1000 000) and it is currently one of the most important open
problems in all of mathematics3. The hardest problems in NP
are the NP-complete problems. The NP-complete problems all
have the interesting property that if any single one of them is
solvable in polynomial time, then all of the problems in NP are
solvable in polynomial time (and, hence, P = NP). So, the NP-
complete problems are the hardest problems in NP in the sense
that they are the ones most unlikely to be solvable in polynomial
time.

In addition to P and NP, we encounter several other com-
plexity classes in this thesis. The most important ones are: FP,
#P, coNP, ΣP

2
, and ΠP

2
. Very briefly, FP is the class of all

problems solvable in polynomial time where the answer is a nat-
ural number, and #P is the class of all problems where the goal
is to count the number of solutions to a problem in NP. For
example, the problem of adding two numbers is in FP and the
problem of counting the number of proper three colorings of a
map is in #P (but probably not in FP). coNP is the class of
problems for which nonexistence of solutions can be proved by
polynomial time verifiable proofs. Hence, the problem of de-
ciding whether a map has a proper three coloring would4 be in
coNP if, given a map that cannot be properly colored by three
colors, there were some way to give a polynomial time verifiable
proof of this. ΣP

2
is the class of problems for which correctness of

solutions can be verified in polynomial time with the help of an
oracle that can solve problems in NP instantly. Similarly, ΠP

2

is the class of problems for which nonexistence of solutions can

3One of the six most important open problems in mathematics ac-
cording to the Clay Mathematics Institute’s list of Millennium Problems:
www.claymath.org/millennium/.

4It is unlikely that this problem is in coNP since it would imply that
NP ⊆ coNP.

4
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be proved by proofs that are verifiable in polynomial time with
the help of an oracle that can solve problems in NP instantly.
The reader is referred to [43] for formal definitions and further
information about these classes.

The following inclusions among these complexity classes are
obvious from their definitions.

P ⊆ NP ⊆ ΣP

2
, P ⊆ coNP ⊆ ΠP

2

Throughout this thesis, we assume that all the inclusions above
are strict, e.g., that P 6= NP 6= ΣP

2
. Moreover, we assume that

FP 6= #P. These assumptions are all non-controversial and
widely accepted [43]. For example, it seems unlikely that any
physically realizable computational machine (including quantum
computers) can solve NP-complete problems in polynomial time.
It has even been argued that the impossibility to solve NP-
complete problems in polynomial time in our physical universe
is a natural law as profound as the impossibility of superluminal
signalling [1].

Again, let us concentrate on the perhaps two most important
complexity classes, P and NP. Given a natural computational
problem of your choice in NP, it is very likely that your problem
is already classified as being either in P or NP-complete [26]
(or that such a classification is an easy exercise5). Indeed, one
of the greatest success stories in all of TCS is the realization
that almost all natural computational problems can be classified
(under reasonable assumptions, such as P6=NP) as either being
tractable or hard to solve. Somehow this does not fit in with our
(or at least mine) intuitive (pre-complexity theory) experience
of the difficulty of solving problems. Problems are not just easy
or hard, but instead we intuitively expect that there are prob-
lems of intermediate complexity. Indeed, Ladner’s theorem [39]

5There are exceptional natural problems such as Graph Isomorphism,
which are not yet classified and which might be of intermediate complexity,
but they are extremely rare.

5
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Figure 1: The internal structure of NP according to Ladner’s
theorem (NPC is just an abbreviation of NP-complete).

tells us that if P 6= NP, then there is an infinite number of
classes of problems in NP that are neither NP-complete nor in
P. See Figure 1 for a simplified pictorial description of the inter-
nal structure of the complexity class NP, under the assumption
that P 6= NP.

This apparent lack of natural computational problems of in-
termediate complexity is something that we do not yet fully un-
derstand. For example, which classes of problems in NP have
a dichotomy between P and NP-complete, i.e., do not contain
problems of intermediate complexity?

Parameterized Problems

One way to investigate such dichotomy questions is to take a
problem and parameterize it in some natural way and study what
happens to the complexity of the problem when the parameter is
tweaked, e.g., can the parameter be tuned-in so that the resulting

6
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problem is of intermediate complexity? For example, consider
the problem of coloring the vertices of a graph with k colors
such that no two adjacent vertices receive the same color, i.e.,
the k-coloring problem6. This problem is in P when k ≤ 2 and
NP-complete for k ≥ 3. Hence, in this case we could not tweak
the parameter to obtain a problem of intermediate complexity
(which is not too surprising considering the restricted form of
the parameter). The k-coloring problem is a particular case of
the more general H-coloring problem, that is, given a graph G
determine whether or not there is a homomorphism from G to
H (i.e., an edge preserving map from the vertices of G to the
vertices of H). Note that a graph G can be k-colored if and only
if there is a homomorphism from G to the complete irreflexive
graph on k-vertices. Hell and Nešetřil [29] proved that the H-
coloring problem is in P if H is bipartite or if H contains a looped
vertex and that it is NP-complete otherwise. So, despite the fact
that the parameter H in the H-coloring problem is much more
sensitive than the k parameter in the k-coloring problem, it is
still not possible to tweak the parameter H to obtain a problem
of intermediate complexity.

For another example of a parameterized version of an NP-
complete problem that on the surface looks very different from
the H-coloring problem, consider the satisfiability problem for
CNF formulas parameterized by the set of allowed clauses. The
CNF-SAT(Γ) problem in propositional logic is the problem of
deciding whether or not a conjunction of clauses, all of which
must be of the types of allowed clauses specified by Γ, have a
variable assignment satisfying all the clauses. For example, the
2-SAT problem is the CNF-SAT(Γ) problem where

Γ = {(x ∨ y), (¬x ∨ y), (¬x ∨ ¬y)}

6The map coloring problem mentioned earlier is just the k-coloring prob-
lem on planar graphs.

7
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and the 3-SAT problem is CNF-SAT(Γ) where

Γ = {(x ∨ y ∨ z), (¬x ∨ y ∨ z), (¬x ∨ ¬y ∨ z), (¬x ∨ ¬y ∨ ¬z)}.

We emphasize that Γ contains the set of allowed types of clauses,
i.e., Γ = {(x ∨ y), (¬x ∨ y), (¬x ∨ ¬y)}, corresponding to the 2-
SAT problem, specifies that instances of the CNF-SAT(Γ) prob-
lem consists conjunctions of clauses each having two (possibly
negated) variables. Hence,

(x1 ∨ ¬x2) ∧ (x1 ∨ x1) ∧ (x2 ∨ x3),

where x1, x2, x3 are propositional variables is an instance of the
CNF-SAT(Γ) problem where Γ = {(x ∨ y), (¬x∨ y), (¬x ∨¬y)}.

As a consequence of a more general result due to Schaefer [47]
(which we come back to in the next section), it follows that also
the CNF-SAT(Γ) class of problems is either in P or NP-complete
(depending on the set of allowed clauses Γ), but never of interme-
diate complexity. Both the CNF-SAT(Γ) class of problems and
the H-coloring class of problems are special cases of a more gen-
eral class of problems, namely, Constraint Satisfaction Problems
(CSPs).

Constraint Satisfaction Problems

Constraint satisfaction problems have a long and rich history in
computer science where they are extensively used to represent
problems of a combinatorial nature [20, 50]. An instance of a
constraint satisfaction problem consists of a set of variables, a set
of possible values for the variables, and a set of constraints that
restrict the combination of values that certain tuples of variables
may take. The goal is to decide whether there is an assignment
of values to the variables such that the given constraints are
satisfied.

Due to the importance the CSP problem and the fact that
it is an NP-complete problem, there has been much research

8
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devoted to finding restricted cases of the CSP problem that are
tractable.

One of the dominant and most natural approaches for finding
such islands of tractability is to restrict the types of allowed con-
straints [17]. The set of (types of) allowed constraints is called
the constraint language. We now formally define the CSP prob-
lem parameterized by the set of allowed constraints. The set of
all n-tuples of elements from a domain D is denoted by Dn. Any
subset of Dn is called an n-ary relation on D. The set of all fini-
tary relations over D is denoted by RD. A constraint language
over a finite set, D, is a finite set Γ ⊆ RD. The constraint satis-
faction problem over the constraint language Γ, denoted Csp(Γ),
is defined to be the decision problem with instance (V,D,C),
where

• V is a set of variables,

• D is a finite7 set of values (sometimes called the domain),
and

• C is a set of constraints {C1, . . . , Cq}, in which each con-
straint Ci is a pair (si, Ri) where si is a list of variables
from V of length mi, called the constraint scope, and Ri is
an mi-ary relation over the set D, belonging to Γ, called
the constraint relation.

The question is whether there exists a solution to (V,D,C) or
not, that is, a function from V to D such that, for each con-
straint in C, the image of the constraint scope is a member of
the constraint relation.

Example 1 Let 6=D denote the binary relation

{(a, b) | a, b ∈ D and a 6= b}.

7CSPs over infinite domains are also common, but in this thesis the
domain will always be a finite set.

9
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Then the Csp(6=D) problem is exactly the |D|-coloring problem.
To see this, given an instance of the |D|-coloring problem (i.e.,
a graph G = (V,E)), then the corresponding Csp(6=D) instance
I consists of the constraints C = {((vi, vj), 6=D) | (vi, vj) ∈ E}.
That is, two variables vi, vj are constrained by a 6=D constraint if
and only if they are adjacent in the graph. It is easy to see that
the Csp(6=D) instance I has a solution if and only if the graph
G can be |D|-colored.

More generally, given a graph H (viewed as a binary symmetric
relation), then the Csp(H) problem is exactly the H-coloring
problem. Hence, Hell and Nešetřil’s [29] complexity classifica-
tion of the H-coloring problem characterize the complexity of
the Csp(Γ) problem when Γ consists of a single binary symmet-
ric relation.

Now, the research problem that manifests itself is: for which
constraint languages Γ is the Csp(Γ) problem tractable and for
which constraint languages is it NP-complete?

Schaefer proved already in 1978 the following remarkable com-
plexity classification of Csp(Γ) when Γ is constraint language
over a two-element domain.

Theorem 2 ([47]) Let Γ be a finite constraint language over the
domain {0, 1}. The Csp(Γ) problem is in P if Γ satisfies one of
the six conditions below; otherwise Csp(Γ) is NP-complete.

• Every relation in Γ contains the tuple (0, 0, . . . , 0) (also re-
ferred to as 0-valid).

• Every relation in Γ contains the tuple (1, 1, . . . , 1) (also re-
ferred to as 1-valid).

• Every relation in Γ can be expressed by a CNF formula
where each conjunct has at most one unnegated variable
(also referred to as a Horn formula).

10
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Figure 2: The relationship between NP and Csp(Γ) if the Feder-
Vardi dichotomy conjecture holds.

• Every relation in Γ can be expressed by a CNF formula
where each conjunct has at most one negated variable (also
referred to as a dual-Horn formula).

• Every relation in Γ can be expressed by a CNF formula
where each conjunct has at most two variables (also referred
to as a bijunctive formula).

• Every relation in Γ can be expressed by a conjunction of lin-
ear equations over the two element group Z2 (also referred
to as an affine formula).

Feder and Vardi [25] conjectured in their famous dichotomy
conjecture that Csp(Γ) is always either in P or NP-complete.
Moreover, they proved that, in some sense, the Csp(Γ) class of
problems might be the largest class of problems in NP for which
there are no problems of intermediate complexity. Due to the
practical as well as theoretical importance of the Csp(Γ) class
of problems, the Feder-Vardi dichotomy conjecture has received

11
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a great deal of attention. Several different complementary ap-
proaches for attacking the conjecture have been proposed. The
original approach, due to Feder and Vardi [25], is based on logical
methods from descriptive complexity theory. For more informa-
tion on this approach, we refer the reader to [37]. It is fair to say
that the currently most promising approach towards the conjec-
ture is based on results and methods from universal algebra [12],
which we briefly discuss in the next section.

Algebraic Approach

The basis of the algebraic approach to the complexity of Csp(Γ)
stems from the realization that the complexity of Csp(Γ) is com-
pletely determined by the presence or absence of certain closure
operations on Γ.

An operation on a finite set D (the domain) is an arbitrary
function f : Dk → D. Any operation on D can be extended in a
standard way to an operation on tuples over D, as follows: Let
f be a k-ary operation on D and let R be an n-ary relation over
D. For any collection of k tuples, t1, t2, . . . , tk ∈ R, the n-tuple
f(t1, t2, . . . , tk) is defined as follows:

f(t1, t2, . . . , tk) =

(f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n], t2[n], . . . , tk[n])),

where tj[i] is the i-th component in tuple tj.
Now, let R ∈ Γ. If f is an operation such that for all

t1, t2, . . . , tk ∈ R we have f(t1, t2, . . . , tk) ∈ R, then R is in-
variant (or, in other words, closed) under f . If all relations in Γ
are invariant under f then Γ is invariant under f . An operation
f such that Γ is invariant under f is called a polymorphism of
Γ. The set of all polymorphisms of Γ is denoted Pol(Γ). Given
a set of operations F , the set of all relations that are invariant
under all the operations in F is denoted Inv(F ).

12
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Example 3 A majority operation f is a ternary operation sat-
isfying f(a, a, b) = f(a, b, a) = f(b, a, a) = a for all a, b ∈ D; Let
D = {0, 1, 2} and let f be the majority operation on D where
f(a, b, c) = a if a, b and c are all distinct. Furthermore, let

R = {(0, 0, 1), (1, 0, 0), (2, 1, 1), (2, 0, 1), (1, 0, 1)}.

It is then easy to verify that for every triple of tuples, x,y,z ∈ R,
we have f(x,y,z) ∈ R. For example, if x = (0, 0, 1),y = (2, 1, 1)
and z = (1, 0, 1) then

f(x,y,z) =
(

(f(x[1],y[1],z[1]), f(x[2],y[2],z[2]), f(x[3],y[3],z[3])
)

=
(

f(0, 2, 1), f(0, 1, 0), f(1, 1, 1)
)

= (0, 0, 1) ∈ R.

We can conclude that R is invariant under f or, equivalently,
that f is a polymorphism of R.

We continue by defining a closure operation 〈·〉 on sets of
relations: for any set Γ ⊆ RD the set 〈Γ〉 consists of all rela-
tions that can be expressed using relations from Γ ∪ {=D} (=D

is the identity relation on D), conjunction, and existential quan-
tification (see Example 4 below). Intuitively, constraints using
relations from 〈Γ〉 are exactly those which can be simulated by
constraints using relations from Γ.

Example 4 Let

R = {(0, 0, 1), (1, 0, 0), (2, 1, 1), (2, 0, 1), (1, 0, 1)}.

Then the relation

S = {(1, 0, 0), (1, 0, 1), (2, 1, 1)} ≡ ∃z(((x, y, y), R)∧((x, z, w), R))

is in 〈R〉.

The sets of relations of the form 〈Γ〉 are referred to as rela-
tional clones. An alternative characterisation of relational clones
is given by the following theorem.

13
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Theorem 5 (See, [46]) For every set Γ ⊆ RD,

〈Γ〉 = Inv(Pol(Γ)).

The next theorem states that when studying the complexity
of Csp(Γ), it is sufficient to consider constraint languages that
are relational clones.

Theorem 6 ([30]) Let Γ be a constraint language and Γ′ ⊆ 〈Γ〉
finite. Then Csp(Γ′) is polynomial-time reducible to Csp(Γ).

As an easy consequence of the preceding results, if Pol(Γ) ⊆
Pol(Γ′) for a finite constraint language Γ′, then Csp(Γ′) is poly-
nomial-time reducible to Csp(Γ). Just note that the fact that
Pol(Γ) ⊆ Pol(Γ′) implies that Inv(Pol(Γ′)) ⊆ Inv(Pol(Γ)) and,
as a consequence of Theorem 5, Γ′ ⊆ 〈Γ〉 and the reduction
follows from Theorem 6. Hence, the complexity of the Csp(Γ)
problem is completely determined by the polymorphisms of Γ,
i.e., Pol(Γ). Hence, complexity results for Csp(Γ) can be conve-
niently stated in terms of the operations in Pol(Γ). For example,
Jeavons et al. [31] prove that if Pol(Γ) contains a majority op-
eration (as defined in Example 3), then Csp(Γ) is in P.

It is well known that the set of all relational clones over a
set D form a lattice under set inclusion. Post [45] classified all
relational clones over the Boolean domain. The lattice of all
Boolean relational clones is usually referred to as Post’s lattice
and can be found in Figure 3. This lattice is an effective tool for
classifying the complexity of Csp(Γ)-like problems over Boolean
constraint languages, see for example Papers IV and V in this
thesis. For more information on the Boolean relational clones
and Post’s lattice we refer the reader to the survey articles [4, 5].

We remark that Schaefer did not use this lattice in the proof
of his dichotomy theorem for Csp(Γ) over Boolean constraint
languages. In fact, it is easy to give a very short proof of Schae-
fer’s dichotomy theorem using Post’s lattice. To illustrate the
power of the algebraic approach we sketch such a proof.

14
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Figure 3: Post’s lattice of relational clones.
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The six tractable cases in Schaefer’s dichotomy theorem are
(in Schaefer’s own words) all either trivial or previously known.
We have indicated the relational clones corresponding to these
six tractable cases by making them bold in the lattice. Hence,
Csp(Γ) is in P when 〈Γ〉 is one of these six relational clones, or a
relational clone lying below one of these in the lattice. Only two
relational clones remain to be classified, namely, BR and IN2

(colored grey in the lattice). The relational clone IN2 is exactly
Inv(f) where f is the unary operation, f(0) = 1, f(1) = 0. Let
NAE3 be the following ternary relation on {0, 1}:

NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

It is easy to verify that NAE3 is invariant under f (i.e., NAE3 ∈
IN2) and it is an easy exercise to prove that Csp(NAE3) is
NP-complete. As a consequence, Csp(BR) and Csp(IN2) are
NP-complete, and we are done.

The main technical difficulty (and contribution) in Schaefer’s
original proof was the result that Csp(Γ) is NP-complete for
any Γ which does not fall into one of the six tractable cases.
Using the algebraic approach via Post’s lattice, we get this result
essentially for free.

Unfortunately, the lattices of relational clones over domains of
cardinality three or more are much more complicated and their
structure is far from well understood. Never the less, Bulatov
managed to prove a dichotomy (between P and NP-complete)
for the complexity of Csp(Γ) for constraint languages Γ over
three-element domains by making heavy use of the algebraic
approach via polymorphisms and relational clones [9]. More-
over, Bulatov et al. [12] have presented a conjecture for the com-
plexity of Csp(Γ) that exactly describes the borderline between
tractability and NP-completeness (and hence refines the Feder-
Vardi dichotomy conjecture). The hardness part of the conjec-
ture is known to hold [30] and only the tractability part is left to
prove. More specifically, to prove the conjecture (and, hence, also
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the Feder-Vardi dichotomy conjecture) it would be sufficient [40]
to prove that Csp(Γ) is in P if there is some k-ary weak near-
unanimity (k-WNU) operation f in Pol(Γ), where a k-WNU
operation is a k-ary operation f that satisfies the identities

f(x, . . . , x) = x

and

f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, x, . . . , x, y).

Contributions

In this thesis we broaden, in some sense, the Csp(Γ) framework
by allowing more general computational goals than just decid-
ing whether or not the given constraints have a solution. The
computational goals we study are in turn:

• #Csp(Γ): Count the number of solutions to a Csp(Γ) in-
stance.

• Equiv-Csp(Γ): Decide whether two Csp(Γ) instances are
equivalent, i.e., whether they have the same set of solutions.

• Iso-Csp(Γ): Decide whether two Csp(Γ) instances are iso-
morphic, i.e., whether they can be made equivalent by per-
muting the variables in one of them.

The next two goals rely on a rather special notion of minimal
solutions of Csp(Γ) instances which we need to define. Assume
that the domain D is a partial order (D,≤). Given a Csp(Γ) in-
stance I and a partition of the variables into three sets (P ;Z;Q).
Then, a solution α to I is a minimal solution if and only if there
is no other solution β such that α(x) = β(x) for all x ∈ Q,
β(x) ≤ α(x) for all x ∈ P , and α(x) 6= β(x) for at least one
x ∈ P .

17
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• Min-Csp(Γ): Decide whether a variable assignment is a
minimal solution of a Csp(Γ) instance, i.e., the model check-
ing problem in propositional circumscription.

• Min-Inf-Csp(Γ): Decide whether every minimal solution
of a Csp(Γ) instance also is a solution of an additional
constraint, i.e., the inference problem in propositional cir-
cumscription.

• Abduction(Γ): Given sets of literals M and H and a
Csp(Γ) instance with constraints C, decide whether there
is a set of literals E ⊆ H such that C ∧

∧

E is satisfiable
and C ∧

∧

E |=
∧

M . This is the problem of deciding
whether an explanation exists in propositional logic-based
abduction.

As can be seen from the list above we have not tried to come
up with new exotic computational goals but instead focused on
well-known computational problems that can be recast as Csp(Γ)
problems with different computational goals. Also note that the
parameterization in terms of constraint languages chosen here is
not very controversial. Indeed, the complexity of all these prob-
lems have been studied before under these parameterizations,
cf. [6, 7, 10, 15, 18, 23, 33, 34, 48].

Applicability of the Algebraic Approach

Taking into account that the algebraic approach for investigat-
ing the complexity of Csp(Γ) has proved to be so spectacularly
successful we would like to know the range of applicability of
these powerful methods. In particular, a relevant question is: for
which of the problems above is the algebraic approach applicable?
To be a bit more specific: For which of the computational goals
above is it the case that the complexity is completely determined
by the set of polymorphisms of Γ (i.e., Pol(Γ)), or equivalently,

18
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for which computational goals is it the case that the complex-
ity of the problem restricted to Γ and Γ′ is the same whenever
〈Γ〉 = 〈Γ′〉?

For the #Csp(Γ) problem this has already been proved by
Bulatov and Dalmau [10]. The situation for Equiv-Csp(Γ) and
Iso-Csp(Γ) is less clear. The complexity of Equiv-Csp(Γ) and
Iso-Csp(Γ) has been classified for all Boolean constraint lan-
guages Γ by Böhler et al. [6, 7]. By inspecting their results it is
easy to see that for finite Boolean constraint languages Γ and Γ′

it is the case that Equiv-Csp(Γ) and Equiv-Csp(Γ) have the
same complexity. The analogous result hold for Iso-Csp(Γ). For
larger domains the problem is still open.

For Min-Csp(Γ) and Min-Inf-Csp(Γ) we show (in Paper
III) that if Γ′ is a finite subset of 〈Γ〉, then Min-Csp(Γ′) (Min-
Inf-Csp(Γ′)) is polynomial-time reducible to Min-Csp(Γ) (Min-
Inf-Csp(Γ)). Hence, the algebraic approach is applicable to
these problems.

Similarly, we show (in Paper V) that Abduction(Γ′) is poly-
nomial-time reducible to Abduction(Γ) when Γ′ is a finite sub-
set of 〈Γ〉. Thus, the algebraic approach is applicable also to the
Abduction(Γ) problem.

Complexity Dichotomies

We have so far emphasized the theoretical importance of com-
plexity classifications, but of course they can also be of great
practical importance. For example, the identification of new is-
lands of tractability for an important (suitable parameterized)
problem can lead to better solution procedures for this prob-
lem. By choosing the parameterization of the problem carefully,
it is often possible to more systematically study special cases of
the problem which has previously been studied in the literature.
Taking the Csp(Γ) problem as an example, it offers a common
and unified framework where as varied forms of problems as H-
coloring and CNF-SAT(Γ) occurs as natural special cases. As
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we have seen, the complexity of these two (on the surface) very
different problems can be completely determined and uniformly
explained just by the presence (or absence) of certain classes of
polymorphisms of the corresponding constraint languages.

In light of the long-standing open problem of classifying the
complexity of Csp(Γ), it seems difficult to classify the complexity
of many of the problems studied in this thesis for arbitrary finite
constraint languages. Hence, we focus on restricted classes of
constraint languages which are particularly interesting.

Linear Equations

For the first three problems #Csp(Γ), Equiv-Csp(Γ), and Iso-
Csp(Γ), we restrict our attention to the case where the con-
straints are linear equations over some finite semigroup (actually
a group for Equiv-Csp(Γ) and Iso-Csp(Γ)). Remember that a
semigroup is a set S together with a binary associative opera-
tion · (a group is a semigroup with the additional requirements
that there is an identity element and every element have an in-
verse).

Systems of linear equations are the canonical examples of
CSPs. A linear equation over a fixed finite semigroup (S, ·) is of
the form x1 · x2 · . . . · xk = y1 · y2 · . . . · yj where each xi and yi is
either a variable or a constant in S.

The way we parameterize the problems is by fixing the semi-
group (S, ·) and requiring that all constraints are linear equations
over (S, ·). Hence, the semigroup (S, ·) gives rise to a constraint
language ΓS consisting of all relations expressible as the set of
solutions to equations over (S, ·). For example, the equation
x · y · z = c, where x, y, z are variables and c is a constant, gives
rise to the following ternary relation R = {(x, y, z) | x ·y ·z = c}.

The complexity of problems restricted to constraint languages
of the form ΓS has been studied before. The complexity of
Csp(ΓS) was classified by Goldmann and Russell [27] in the im-
portant special case when S is a group. They prove that the
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problem is in P if the group is Abelian (i.e., commutative), and
NP-complete if the group is non-Abelian. Tesson [49] and Klima
et al. [35] classify the complexity of Csp(ΓS) for a large class of
semigroups S. Moreover, they prove that for each finite con-
straint language Γ there is a semigroup (S, ·) such that Csp(Γ)
and Csp(ΓS) are polynomial-time equivalent. Hence, giving a
complexity classification of Csp(ΓS) for all finite semigroups
(S, ·) would amount to resolving the Feder-Vardi dichotomy con-
jecture for CSPs.

We remark in passing that the complexity of several impor-
tant optimization problems have been classified over constraint
languages of the form ΓG for fixed finite groups (G, ·), see for
example [24, 28, 38].

In Paper I we classify the complexity of #Csp(ΓS) for a large
class of semigroups S. We prove that #Csp(ΓS) is tractable
when (S, ·) is an Abelian group and #P-complete when (S, ·) is
a non-Abelian group. In the case of monoids, #Csp(ΓS) is #P-
complete when (S, ·) is a monoid that is not a group. Given a
semigroup (S, ·), we say that an element a in S is divisible if and
only if there exists b, c in S such that b·c = a. In the case of semi-
groups where all elements are divisible we show that #Csp(ΓS)
is tractable if (S, ·) is a direct product of an Abelian group and
a rectangular band, and #P-complete otherwise. The class of
semigroups where all elements have divisors contains most of the
interesting semigroups, in particular regular semigroups.

The equivalence and isomorphism problems for systems of
equations over finite groups (G, ·), i.e., Equiv-Csp(ΓG) and Iso-
Csp(ΓG), are studied in Paper II. Our main results are the fol-
lowing:

• Equiv-Csp(ΓG) is in P ifG is Abelian, and coNP-complete
if G is non-Abelian.

• Iso-Csp(ΓG) is in NP and at least as hard as graph iso-
morphism if G is Abelian; and for non-Abelian groups it is
in ΣP

2
and coNP-hard.
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• The Iso-Csp(ΓG) problem for the restriction where the
number of variable occurrences in each equation is bounded
by a constant k, is exactly as hard as graph isomorphism
(i.e., Graph Isomorphism-complete) for Abelian groups.
For non-Abelian groups it is in PNP

|| (which is the class of
problems solvable in polynomial time by making nonadap-
tive queries to an NP-oracle) and coNP-hard.

• Finally, we prove that the problem of counting the number
of isomorphisms between two systems of linear equations
over a group G is no harder than deciding whether an iso-
morphism exists at all.

Nonmonotonic Logics

Much research has been devoted to determine the complexity of
reasoning in various nonmonotonic logic formalisms [16]. Two of
the most well-studied formalisms are circumscription, which is
the topic of Papers III and IV, and abduction which is the topic
of Paper V.

Much of the previous research on complexity of reasoning in
nonmonotonic logics has focused on identifying islands of tracta-
bility (for instance by restricting the constraint language Γ) [5, 7,
26] and determining the complexity in the general case (without
restrictions on the constraint language) [11, 12]. In this the-
sis we take a different perspective and aim at proving complete
classifications for circumscription and abduction problems pa-
rameterized by the set of allowed constraints Γ.

In Paper III we relate the complexity of Min-Csp(Γ) and
Min-Inf-Csp(Γ) to the complexity of Csp(Γ). As a corollary
to Bulatov’s [9] complexity classifications of Csp(Γ) over three-
element domains we get a dichotomy (between P and coNP-
completeness) for the complexity of Min-Csp(Γ) when Γ is a
constraint language over a three-element domain. Similarly, we
prove a dichotomy between membership in coNP and ΠP

2
-comp-
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leteness for Min-Inf-Csp(Γ) over three-element domains.
In Papers IV and V we prove complete complexity classifica-

tions for Min-Inf-Csp(Γ) and Abduction(Γ) for all Boolean
constraint languages Γ. The exact borderlines for the complexity
of Min-Inf-Csp(Γ) are as follows:

• P: If Γ is Horn and dual-Horn, width-2 affine, or negative
Horn.

• coNP-complete: If Γ is Horn, dual-Horn, affine, or bi-
junctive (and not Horn and dual-Horn, width-2 affine, or
negative Horn).

• ΠP

2
-complete: If Γ is neither Horn, nor dual-Horn, nor

affine, nor bijunctive.

The borderlines for Abduction(Γ) are as follows:

• P: If Γ is affine of width 2.

• NP-complete: If Γ is Horn, dual Horn, bijunctive or affine
(and not affine of width 2).

• ΣP

2
-complete: If Γ is neither Horn, nor dual-Horn, nor

affine, nor bijunctive.

Structure of the Thesis

In this introductory chapter of the thesis we have tried to put
our results in context with previous work on complexity classifi-
cations in general and of Csp(Γ) in particular. We continue with
more detailed summaries of the results of the individual papers.

The rest of this thesis consists of five independent papers,
each one containing the necessary background and definitions
needed for the results. Due to this fact, the introductory parts
of the individual papers sometimes overlap and contain repeti-
tions. Hopefully, this should not be too disturbing. All of the
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papers are written to be fairly self-contained and, in general,
only knowledge of discrete mathematics and some basics of com-
putational complexity is assumed. The papers are presented in
the same order as they were written and they can be read in
any order. The papers in this thesis are more or less identical
to the original published papers, except for minor typographical
adjustments.

Summary of the Papers

In this section we give summaries of the topics and results of the
papers constituting this thesis. We try to do this at a sufficiently
abstract level to avoid the need for formal definitions.

Paper I: The Complexity of Counting Solu-
tions to Systems of Equations over Finite Semi-
groups

In this paper we study the complexity of counting the number of
solutions to systems of linear equations over finite semigroups.
The problem is parameterized by the semigroup S, and our goal
is to classify the complexity of counting the number of solutions
to systems of equations over each finite semigroup S.

The problem is naturally viewed as a special case of the prob-
lem of counting the number of solutions of a Csp(Γ) instance (i.e.,
the #Csp(Γ) problem), by identifying a constraint language ΓS
with each finite semigroup S. The constraint language ΓS is the
set of all relations expressible by linear equations over S.

Creignou and Hermann [18] prove a dichotomy theorem (be-
tween membership in FP and #P-completeness) for the com-
plexity of the #Csp(Γ) problem over the Boolean domain. Bu-
latov and Dalmau [10] prove that the complexity of #Csp(Γ)
is completely determined by the polymorphisms of Γ and using
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this result they give some very general tractability and hardness
results for #Csp(Γ) over arbitrary finite domains.

By making extensive use of the results for #Csp(Γ), due to
Bulatov and Dalmau [10], we manage to classify the complexity
of #Csp(ΓS) for a large class of semigroups. In particular, we
prove a dichotomy for the complexity of counting the number
of solutions to systems of linear equations over any fixed finite
regular semigroup. More specifically, we prove that the prob-
lem is in FP if the regular semigroup S is a direct product of
a rectangular band and an Abelian group, and that it is #P-
complete otherwise. An easy consequences of this result is that
counting the number of solutions to systems of linear equations
over a fixed finite group is in FP if the group is Abelian, and
#P-complete if the group is non-Abelian.

Finally, we remark that Kĺıma et al. [36], building upon the
results in this paper and [11], completely classify the complexity
of counting the number of solutions to systems of equations over
any finite semigroup.

Paper II: The Complexity of Equivalence and
Isomorphism of Systems of Equations over Fi-
nite Groups

Isomorphism problems are notoriously known to be hard to clas-
sify from a complexity point of view. The graph isomorphism
problem plays a special role in complexity theory [32] since it is
the most famous candidate for a natural problem in NP that
might be of intermediate complexity, i.e., being neither in P nor
NP-complete.

In this paper we study the complexity of the isomorphism
problem for systems of linear equations over finite groups. We
say that two systems of linear equations (over the same group G)
are equivalent they have the same set of solutions. Two systems
of linear equations (over the same group G) are isomorphic if the
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variables in one of them can be permuted so that the resulting
systems of equations are equivalent. Just as in Paper I we pa-
rameterize the problem by fixing the underlying group G. That
is, our goal is to classify the complexity of the isomorphism prob-
lem for systems of linear equations over G, for each finite group
G. We also study a slightly restricted variant of the problem in
which the total number of variable occurrences in each equation
is bounded by a constant k.

Our main results are the following:

• The equivalence problem for systems of linear equations
(over the finite group G) is in P if G is Abelian, and coNP-
complete if G is non-Abelian.

• The isomorphism problem for systems of linear equations
is in NP and at least as hard as graph isomorphism if G
is Abelian; and for non-Abelian groups it is in ΣP

2
and

coNP-hard.

• The isomorphism problem for the restriction where the
number of variable occurrences in each equation is bounded
by a constant k is exactly as hard as graph isomorphism
(i.e., Graph Isomorphism-complete) for Abelian groups.
For non-Abelian groups it is in PNP

|| and coNP-hard.

• Finally, we prove that the problem of counting the number
of isomorphisms between two systems of linear equations
over a group G is no harder than deciding whether an iso-
morphism exists at all.

Interestingly, many of the proofs and proof techniques used for
proving these results closely follows proofs for other isomorphism
problems such as the formula isomorphism problem [2] and iso-
morphism problems for Boolean constraints [6, 7]. This seems
to suggest that a more unified treatment of these and similar
isomorphism problems is possible.

26



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 27 — #39

Paper III: An Algebraic Approach to the Com-
plexity of Propositional Circumscription

Circumscription, first introduced by McCarthy [41], is one of the
most important and well-studied formalisms in the realm of non-
monotonic reasoning. The key intuition behind circumscription
is that by focusing on minimal models of formulas (instead of all
models), we arrive at a formalism which is closer to how common
sense reasoning is performed by humans.

The notion of a minimal model can be defined in different
ways, we use one of the most general definitions. Given a propo-
sitional (Boolean) formula T and a partition of the variables in T
into three (possibly empty) disjoint subsets (P ;Z;Q), we define
a partial order on satisfying models (extending the order 0 ≤ 1
on truth values) as follows. Let α, β be two models of T , then
α ≤ β if α and β assign the same value to the variables in Q and
for every variable p in P , α(p) ≤ β(p). Moreover, if there exists
a variable p in P such that α(p) 6= β(p), we write α < β. A
minimal model of a formula T is a satisfying model α such that
there exist no satisfying model β where β < α.

Every logical formalism gives rise to two fundamental prob-
lems: model checking and inference. In the case of propositional
circumscription, the model checking and inference problems can
be formulated as follows.

• Model checking: Given a propositional formula T , a
partition of the variables in T into three disjoint subsets
(P ;Z;Q) and a truth assignment α, is α a minimal model
of T?

• Inference: Given two propositional formulas T and T ′ and
a partition of the variables in T into three disjoint (possibly
empty) subsets (P ;Z;Q), is T ′ true in every minimal model
of T?

We parameterize the problems by requiring that the theory T is
built over a fixed finite (Boolean) constraint language Γ. That is,
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the theory T consists of a conjunction of clauses/constraints, all
of which must come from the constraint language Γ. We denote
the parameterized versions of the problem by Min-Csp(Γ) and
Min-Inf-Csp(Γ), respectively.

The problems Min-Csp(Γ) and Min-Inf-Csp(Γ) over Bool-
ean constraint languages Γ are very well-studied from the com-
putational complexity perspective [13, 14, 15, 21, 22, 33, 34].
In particular, Kirousis and Kolaitis prove a dichotomy (between
membership in P and coNP-completeness) for the complexity
of Min-Csp(Γ) where Γ is a Boolean constraint language.

In this paper we study the Min-Csp(Γ) and Min-Inf-Csp(Γ)
problems for arbitrary constraint languages over finite partially
ordered domains (i.e., the domain D is a partial order (D,≤)
and the notion of minimal models/solutions is defined in terms
of this partial order ≤).

Our first result shows that the algebraic approach to CSP
is applicable to Min-Csp(Γ), i.e., that the complexity of the
Min-Csp(Γ) problem is completely determined by the relational
clone corresponding to Γ. Using this approach we give a very
short and simple proof of Kirousis and Kolaitis complexity di-
chotomy for Min-Csp(Γ) over the Boolean domain. We also
prove a tight correspondence between the complexity of Csp(Γ)
and Min-Csp(Γ). As a corollary of Bulatov’s classification of
Csp(Γ) over three-element domains [9] we get a complexity di-
chotomy (between P and coNP-completeness) for Min-Csp(Γ)
over three-element domains.

The story is essentially the same for the Min-Inf-Csp(Γ)
problem. Using the algebraic approach together with Schaefer’s
and Bulatov’s classifications of Csp(Γ) over Boolean and three-
element domains, respectively, we are able to prove dichotomies
(between membership in coNP and ΠP

2
-completeness) for the

complexity of Min-Inf-Csp(Γ) over Boolean and three-element
domains.
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Paper IV: A Trichotomy in the Complexity of
Propositional Circumscription

This second paper on propositional circumscription studies the
special case of the inference problem from paper III where the
background theory T consists of constraints over the Boolean
domain. Hence, the parameter Γ is a constraint language over
{0, 1}. Our approach in this paper is to use Post’s lattice as a
tool for proving a trichotomy (between P, coNP-completeness,
and ΠP

2
-completeness) for the Min-Inf-Csp(Γ) problem (where

Γ is a Boolean constraint language).
The dichotomy between membership in coNP and ΠP

2
-comp-

leteness is proved in Paper III, so all that remains is to classify the
complexity of the Min-Inf-Csp(Γ) problems that reside within
coNP. Cadoli and Lenzerini [15] study the complexity of the
Min-Inf-Csp(Γ) problem extensively and prove several hard-
ness results. Durand and Hermann prove an additional impor-
tant hardness result in [21]. Until now, only one tractable case
has been known for the Min-Inf-Csp(Γ) problem, namely the
case where the theory T consists only of clauses having at most
one positive and at most one negative literal (i.e., clauses that
are both Horn and dual-Horn) [15]. We identify two additional
tractable classes of constraint languages, namely, width-2 affine
and Horn clauses only containing negative literals. Then we ob-
serve that Min-Inf-Csp(Γ) is coNP-complete for all remaining
classes of constraint languages Γ. More specifically, by using
the algebraic approach and Post’s lattice, it is easy to realize
that these three tractable classes together with known hardness
results from the literature [15, 21], gives a complete classifica-
tion for the complexity of the Min-Inf-Csp(Γ) problem over
the Boolean domain. The exact borderlines for the complexity
of Min-Inf-Csp(Γ) are as follows:

• P: If Γ is Horn and dual-Horn, width-2 affine, or negative
Horn.
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• coNP-complete: If Γ is Horn, dual-Horn, affine, or bi-
junctive (and not Horn and dual-Horn, width-2 affine, or
negative Horn).

• ΠP

2
-complete: If Γ is neither Horn, nor dual-Horn, nor

affine, nor bijunctive.

Paper V: Propositional Abduction is Almost
Always Hard

Abduction is the fundamental reasoning process which consists
of explaining observations by plausible causes taken from a given
set of hypotheses. For instance, it is the problem of trying to de-
rive diseases from observed symptoms, according to known rules
relating both. This process was extensively studied by Peirce [8],
and its importance to Artificial Intelligence was first emphasized
by Morgan [42] and Pople [44].

We are interested here in propositional logic-based abduction,
i.e., the background knowledge is represented by a propositional
theory. More specifically, we study the computational complex-
ity of the basic problem of deciding whether an explanation exists
for a set of manifestations. More formally, given a propositional
theory T formalizing a particular application domain, a set M
of literals describing a set of manifestations, and a set H of lit-
erals containing possible hypotheses, decide whether M can be
explained, that is, is there a set E ⊆ H such that T ∪ E is
consistent and logically entails M? We denote the Abduction
problem, as described above, where the theory T is restricted to
the finite Boolean constraint language Γ, by Abduction(Γ).

Eiter and Gottlob [23] prove (among other things) that Abd-
uction(Γ) is ΣP

2
-complete in the general case. Moreover, many

constraint language restrictions yielding Abduction(Γ) prob-
lems of lower complexity are known (see for example [48, 51]).

In this paper we again use the algebraic approach via Post’s
lattice to give a complete classification of the complexity of the
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Abduction(Γ) problem for all Boolean constraint languages Γ.
More precisely, we prove that Abduction(Γ) is:

• In P if Γ is affine of width 2,

• Otherwise, NP-complete if Γ is Horn, dual Horn, bijunctive
or affine,

• Otherwise, ΣP

2
-complete.

As far as we know, the polynomial case and the minimal NP-
hard languages that we exhibit are all new results.

We remark that our formalization of the Abduction(Γ)
problem is quite general in that we allow the possible hypotheses
to be any set of literals and the manifestations to be any set of
literals. The corresponding Abduction(Γ) problem in which
the manifestation is a single literal and the possible hypotheses
H are of the form H = {v,¬v | v ∈ V ′ ⊆ V ars(T )} (i.e., a literal
is in H if and only if its negation is) was recently classified by
Creignou and Zanuttini in [19]. Their results together with the
results in this paper shows that even minor changes of the form
of allowed possible hypotheses and manifestations have a strong
influence on the complexity of the problem.
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Boston, 1993.

[33] L. Kirousis and P. Kolaitis. The complexity of mini-
mal satisfiability problems. Information and Computation,
187(1):20–39, 2003.

[34] L. Kirousis and P. Kolaitis. A dichotomy in the complex-
ity of propositional circumscription. Theory of Computing
Systems, 37(6):695–715, 2004.

[35] O. Klima, P. Tesson, and D. Therien. Dichotomies in the
complexity of solving systems of equations over finite semi-
groups. Theory of Computing Systems, 40(3):263–297, 2007.
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The Complexity of
Counting Solutions to
Systems of Equations over
Finite Semigroups

Gustav Nordh and Peter Jonsson

Abstract

We study the computational complexity of counting the number of

solutions to systems of equations over a fixed finite semigroup. We

show that if the semigroup is a group, the problem is tractable if

the group is Abelian and #P-complete otherwise. If the semigroup

is a monoid (that is not a group) the problem is #P-complete. In

the case of semigroups where all elements have divisors we show that

the problem is tractable if the semigroup is a direct product of an

Abelian group and a rectangular band, and #P-complete otherwise.

The class of semigroups where all elements have divisors contains

most of the interesting semigroups e.g. regular semigroups. These

results are proved by the use of powerful techniques from universal

algebra.
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1 Introduction

The computational complexity of deciding whether systems of
equations over a fixed finite semigroup are solvable has been
intensively studied in the past. In [3], it is proved that when
the semigroup is a group, the problem is tractable if the group
is Abelian and NP-complete otherwise. This line of research
continued in [6, 7], where the corresponding problem for finite
monoids was given a complete solution. Some partial results
in the general case of finite semigroups have been proved in [7].
Note that even the restricted problem of determining the compu-
tational complexity of solving systems of equations over a fixed
regular semigroup is still open.

In this paper we study the computational complexity of count-
ing solutions to systems of equations over a fixed finite semigroup.
This problem has not been given the same attention as the cor-
responding decision problem. A system of equations over a fixed
finite semigroup (S, ·) is a collection of equations of the form
w1 ·w2 · · · · ·wk = y1 · y2 · · · · · yj where each wi and yi is either a
variable or a constant in S. We denote the problem of counting
the number of solutions to systems of equations over the semi-
group (S, ·) by #EQN∗

S. The notation #EQN∗
S is used in order

to comply with the notation in [3, 6, 7]. The presence of the ∗

in #EQN∗
S is motivated by the need to distinguish this problem

from the problem of counting the number of solutions to a single
equation over (S, ·) (denoted by #EQNS). The complexity of
#EQN∗

S is measured in the size of the systems of equations (the
size of (S, ·) is fixed and does not matter).

We prove that #EQN∗
G is tractable when (G, ·) is an Abelian

group and #P-complete when (G, ·) is a non-Abelian group. In
the case of monoids, #EQN∗

M is #P-complete when (M, ·) is a
monoid that is not a group. Given a semigroup (S, ·), we say that
an element a in S is divisible if and only if there exists b, c in S
such that b · c = a. In the case of semigroups where all elements
are divisible we show that #EQN∗

S is tractable if (S, ·) is a direct
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product of an Abelian group and a rectangular band, and #P-
complete otherwise. The class of semigroups where all elements
have divisors contains most of the interesting semigroups, in par-
ticular regular semigroups. Moreover we prove that if (S, ·) is a
semigroup with zero, then #EQN∗

S is tractable if (S, ·) is such
that for all elements x, y in S, x ·y = 0, and #P-complete other-
wise. Important to note is that all the conditions we impose on
our semigroups to ensure the tractability (or #P-completeness)
of #EQN∗

S can be checked in polynomial time (in the size of the
semigroups).

Our approach for obtaining dichotomy theorems for #EQN∗
S

relies heavily on the use of powerful algebraic techniques that
have previously shown to be very useful in proving dichotomy
theorems for Constraint Satisfaction Problems (CSPs) [1, 2]. It
is our belief that similar algebraic techniques can also be used in
a unified approach to determine the complexity of the decision
problem.

The paper is organized as follows. In Section 2 we give the
basic definitions and results needed in the rest of this paper.
Section 3 contains all our tractability proofs for #EQN∗

S. In
Section 4 we prove the dichotomy for the computational com-
plexity of #EQN∗

S when (S, ·) is a group or monoid. In Section
5 we prove the dichotomy for the computational complexity of
#EQN∗

S when (S, ·) is a semigroup with zero or is in the class of
semigroups where all elements are divisible.

2 Preliminaries

2.1 CSPs

In this section we introduce the notation and basic results on
CSPs that we will use in the rest of this paper.

Let D be a finite set. The set of all n-tuples of elements of D
is denoted by Dn. Any subset of Dn is called an n-ary relation

41



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 42 — #54

on D. The set of all finitary relations over D is denoted by RD.

Definition 7 A constraint language over a finite set, D, is an
arbitrary set Γ ⊆ RD.

Definition 8 The counting constraint satisfaction problem over
the constraint language Γ, denoted #CSP (Γ), is defined to be
the counting problem with instance (V,D,C), where

• V is a finite set of variables,

• D is a set of values (sometimes called a domain), and

• C is a set of constraints {C1, . . . , Cq}, in which each con-
straint Ci is a pair (si, ̺i) with si a list of variables of length
mi, called the constraint scope, and ̺i an mi-ary relation
over the set D, belonging to Γ, called the constraint rela-
tion.

We ask for the number of solutions to (V,D,C), that is, the
number of functions from V to D such that, for each constraint in
C, the image of the constraint scope is a member of the constraint
relation.

The corresponding decision problem where we are interested in
the existence of a solution is denoted CSP (Γ). In the context
of this paper D is the elements of a finite semigroup (S, ·) and
Γ is the set of relations expressible as equations over (S, ·) (de-
noted by ΓS). For example the equation x · y = c where x, y are
variables and c is a constant gives rise to the following relation
R = {(x, y)|x · y = c}.

Next we consider operations on the domain D. Any operation
onD can be extended in a standard way to an operation on tuples
over D, as follows.

Definition 9 Let f be a k-ary operation on D and let R be an n-
ary relation over D. For any collection of k tuples, t1, t2, . . . , tk ∈
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R, the n-tuple f(t1, t2, . . . , tk) is defined as follows:

f(t1, t2, . . . , tk) =

(f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n], t2[n], . . . , tk[n]))

where tj[i] is the i:th component in tuple tj.

A technique that has shown to be useful in determining the com-
putational complexity of CSP (Γ) is that of investigating whether
Γ is closed under certain families of operations [5].

Definition 10 For any constraint relation ̺i ∈ Γ if f is an op-
eration such that for all t1, t2, . . . , tk ∈ ̺i: f(t1, t2, . . . , tk) ∈ ̺i,
then ̺i is closed under f . If all constraint relations in Γ are
closed under f then Γ is closed under f . An operation f such
that Γ is closed under f is called a polymorphism of Γ. The set
of all polymorphisms of Γ is denoted Pol(Γ).

In this paper we will only be concerned with a particular family
of ternary operations called Mal’tsev operations. An operation
M is a Mal’tsev operation if and only if for all x, y, M(x, y, y) =
M(y, y, x) = x.

The following result provides us with the key to prove the
#P-completeness of constraint languages.

Theorem 11 ([2]) If Γ is a finite constraint language that is
closed under no Mal’tsev operation then #CSP (Γ) is #P-comp-
lete.

Throughout this paper we will use the following notation for the
application of an arbitrary Mal’tsev operation M on tuples in a
relation R.

(a, b) ∈ R
(b, b) ∈ R

M (b, a) ∈ R
(a, a)
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In the example above (a, b), (b, b) and (b, a) are three tuples in a
relation R. If (a, a) /∈ R we have shown that R is closed under
no Mal’tsev operation, since (M(a, b, b), M(b, b, a)) = (a, a) for
any Mal’tsev operation M .

All of our #P-completeness proofs for #EQN∗
S follows this

outline: First we choose a relation R in ΓS i.e., R is expressed by
a specific equation E over (S, ·). Then we show that R is closed
under no Mal’tsev operation, thus proving the #P-completeness
of #CSP (ΓS). It should be clear that this implies the #P-
completeness of #EQN∗

S. It is also easy to realize that any
system of equations over a finite semigroup (S, ·) can be (parsi-
moniously) reduced in polynomial time to a system of equations
over (S, ·) such that no equation in this system of equations con-
tains more than three variables. Equations containing more that
three variables can be split into smaller parts by introducing
new variables. Hence we can safely assume that all constraint
languages we consider are finite.

The following theorem is very useful when it comes to proving
tractability results for #CSP (Γ).

Theorem 12 ([2]) A Mal’tsev operation M(x, y, z) = x∗y−1∗z
where ∗ and −1 are the operations of an Abelian group is called
an affine operation. If M ∈ Pol(Γ) then #CSP (Γ) is tractable.

2.2 Definitions and Results from Semigroup
Theory

For the convenience of the reader we here give the definitions
and results from semigroup theory that we use in the rest of this
paper. The proofs are available in (or easily deducible from) any
standard reference on semigroup theory such as [4].

A semigroup (S, ·) is a set S with an associative binary oper-
ation ·. A semigroup with zero is a semigroup that contains an
element 0 such that for all x in S, 0 · x = x · 0 = 0. A monoid
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is a semigroup that has an identity element. A band is a semi-
group where all elements are idempotent (that is for all x in S,
x · x = x). A rectangular band is a band where for all a, b in S,
a · b · a = a. A regular semigroup is a semigroup where for all a
in S there exists an element b in S such that a · b · a = a. A right
zero semigroup is a semigroup where for all a, b in S, a · b = b
(left zero semigroups are defined in an analogous way). If two
semigroups (S, ·s) and (T, ·t) are isomorphic we denote this by
(S, ·s) ∼= (T, ·t). If (S, ·s) and (T, ·t) are semigroups, then the
Cartesian product (S, ·s) × (T, ·t) becomes a semigroup if we de-
fine (s, t) · (s′, t′) = (s ·s s

′, t ·t t
′). We refer to this semigroup as

the direct product of (S, ·s) and (T, ·t). Let Div(S) denote the
set of divisible elements in S where (S, ·) is a finite semigroup (a
is divisible if and only if there exists b, c in S such that b · c = a).

Theorem 13 If (S, ·) is a finite semigroup and a an arbitrary
element in S, then am is idempotent for some m.

Theorem 14 If (M, ·) is a finite monoid with the identity ele-
ment as the only idempotent then (M, ·) is a group.

Theorem 15 Let (S, ·) be a rectangular band, then there exist a
left zero semigroup (L, ·l) and a right zero semigroup (R, ·r) such
that (S, ·) ∼= (L, ·l) × (R, ·r).

The following theorem is folklore.

Theorem 16 A regular semigroup (S, ·) whose idempotents form
a rectangular band is isomorphic to a direct product of a group
and a rectangular band.

We give some hints on how to prove this theorem. By using
Green’s relations it can be proved that (S, ·) is a completely sim-
ple semigroup, and since (S, ·) is orthodox it follows from the
Rees-Suschkewitch Theorem [4] that (S, ·) is a direct product of
a group and the rectangular band of its idempotents.
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3 Tractability Results

Due to the similar structure of the tractability proofs for the
tractable cases of #EQN∗

S we have gathered all of these proofs
in this section to make a unified approach possible. In the rest
of this section assume that all equations in the systems of equa-
tions are of the following two types: equations only containing
variables, x1 · · · · · xn = x̂1 · · · · · x̂m or equations with a single
variable on the left hand side and a constant on the right hand
side, x = a. We can make this assumption because it is easy to
reduce (parsimoniously and in polynomial time) any system of
equations over a finite semigroup into a system of equations of
this form.

Let A be finite set and let f : An → A and g : Am → A be two
operations. If f(a, . . . , a) = a for all a ∈ A, then f is idempotent.
We say that g commutes with f if for all a11, . . . , a1m, . . . , anm ∈
A,

g(f(a11, . . . , an1), . . . , f(a1m, . . . , anm)) =

f(g(a11, . . . , a1m), . . . , g(an1, . . . , anm))

The following lemma is the foundation for our tractability results.

Lemma 17 Let (S, ·) be a finite semigroup. If f : Sk → S is an
idempotent operation and · commutes with f , then f ∈ Pol(ΓS).

Proof: Arbitrarily choose a relation R ∈ ΓS. If R is a unary
relation (i.e. R(x) holds if and only if x = a for some a ∈
S), then R is closed under f since f is idempotent. Otherwise,
R = {(x1, . . . , xn, x̂1, . . . , x̂m) | x1 · · · · · xn = x̂1 · · · · · x̂m} and
we arbitrarily choose k tuples t1, . . . , tk in R. Now, R is closed
under f if the following holds:

n
∏

i=1

f(t1[i], . . . , tk[i]) =
n+m
∏

i=n+1

f(t1[i], . . . , tk[i]) (∗)
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We know that · commutes with f so

n
∏

i=1

f(t1[i], . . . , tk[i]) = f

(

n
∏

i=1

t1[i], . . . ,
n
∏

i=1

tk[i]

)

and

n+m
∏

i=n+1

f(t1[i], . . . , tk[i]) = f

(

n+m
∏

i=n+1

t1[i], . . . ,
n+m
∏

i=n+1

tk[i]

)

.

Since t1, . . . , tk are tuples in R, it follows that

n
∏

i=1

tj[i] =
n+m
∏

i=n+1

tj[i]

for all j and (∗) holds. 2

Lemma 18 Let (S, ·) be a finite semigroup. If f is an affine
operation and · commutes with f , then #EQN∗

S is tractable.

Proof: We see that f is idempotent since f(a, a, a) = a∗a−1∗a =
a so f ∈ Pol(ΓS) by Lemma 17. Consequently, Theorem 12
implies that #EQN∗

S is tractable. 2

Our tractability results for #EQN∗
S are contained in the follow-

ing theorem.

Theorem 19 #EQN∗
S is tractable when

1. (S, ·) is an Abelian group.

2. (S, ·) is a left zero or right zero semigroup.

3. (S, ·) is a semigroup with zero such that for all x, y in S,
x · y = 0.
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4. (S, ·) ∼= (T, ∗) × (T ′, ∗′) and #EQN∗
T , #EQN∗

T ′ are tract-
able.

Proof: If (S, ·) is an Abelian group, then let M(x, y, z) =
x · y−1 · z. We show that · commutes with M and tractabil-
ity follows from Lemma 18. Let a, b, c be arbitrary tuples in S2,
then M(a[1], b[1], c[1]) ·M(a[2], b[2], c[2]) = a[1] · b[1]−1 · c[1] ·a[2] ·
b[2]−1 ·c[2] = a[1] ·a[2] ·(b[1] ·b[2])−1 ·c[1] ·c[2] = M(a[1] ·a[2], b[1] ·
b[2], c[1] · c[2]).

If (S, ·) is a right-zero group (the proof for left-zero groups
is analogous), then let M(x, y, z) = x ∗ y−1 ∗ z where the oper-
ation ∗ is chosen such that (S, ∗) is an Abelian group (such a
choice is always possible). Let a, b, c be arbitrary tuples in S2,
then M(a[1], b[1], c[1]) ·M(a[2], b[2], c[2]) = M(a[2], b[2], c[2]) =
M(a[1] · a[2], b[1] · b[2], c[1] · c[2]) and tractability follows from
Lemma 18.

If (S, ·) is a semigroup with zero such that for all x, y in S,
x · y = 0, then let M(x, y, z) = x ∗ y−1 ∗ z where the operation
∗ is chosen such that (S, ∗) is an Abelian group. Let a, b, c be
arbitrary tuples in S2, then M(a[1], b[1], c[1])·M(a[2], b[2], c[2]) =
0 = M(a[1] ·a[2], b[1] · b[2], c[1] · c[2]) and tractability follows from
Lemma 18.

If (S, ·) ∼= (T, ∗) × (T ′, ∗′) , then a system of equations over
(S, ·) can be split into two independent systems of equations, one
over (T, ∗) and one over (T ′, ∗′). The number of solutions to the
system of equations over (S, ·) equals the product of the number
of solutions to the systems of equations over (T, ∗) and (T ′, ∗′)
respectively. Hence if #EQN∗

T and #EQN∗
T ′ are tractable, then

so is #EQN∗
S. 2

4 Finite Groups and Monoids

In this section we prove our dichotomies for the complexity of
the counting problem over finite groups and monoids. Note
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that the decision dichotomy proved in [6] and the counting di-
chotomy we prove differs in the case of monoids, for example it is
tractable to decide whether systems of equations over a commu-
tative band are solvable, but to count the number of solutions is
#P-complete.

Theorem 20 Let (G, ·) be a finite group, then #EQN∗
G is tract-

able if (G, ·) is Abelian, and #P-complete otherwise.

Proof: We begin by proving the #P-completeness of #EQN∗
G

when (G, ·) is a non-Abelian group. Because (G, ·) is a non-
Abelian group there exists two elements a, b in G such that a·b 6=
b · a. Consider the following relation R = {(x, y)|x · y = y · x}. It
is easy to see that R is closed under no Mal’tsev operation.

(a, 1) ∈ R a · 1 = 1 · a
(1, 1) ∈ R 1 · 1 = 1 · 1

M (1, b) ∈ R 1 · b = b · 1
(a, b) /∈ R a · b 6= b · a

Hence #EQN∗
G is #P-complete for non-Abelian groups. The

tractability part is proved in Theorem 19. 2

Next we consider the case where the semigroup is a finite monoid.

Theorem 21 Let (M, ·) be a finite monoid that is not a group,
then #EQN∗

M is #P-complete.

Proof: According to Theorem 14 we know that there exist an
element a in M such that a 6= 1 and aa = a. Consider the
relation R = {(x, y)|x · y = a}. It is easy to see that R is closed
under no Mal’tsev operation.

(1, a) ∈ R 1 · a = a
(a, a) ∈ R a · a = a

M (a, 1) ∈ R a · 1 = a
(1, 1) /∈ R 1 · 1 = 1 6= a

Thus, #EQN∗
M is #P-complete. 2
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5 Finite Semigroups

The computational complexity of deciding whether systems of
equations over a fixed finite semigroup are solvable has been
studied in [7], where some evidence is given that a dichotomy
in the decision case would be very hard to prove. Even the re-
stricted problem of proving a dichotomy for regular semigroups
is open. We prove that for semigroups where all elements have
divisors the counting problem is tractable if the semigroup is a
direct product of an Abelian group and a rectangular band, and
#P-complete otherwise. Moreover we prove that for semigroups
with zero, the problem is tractable if the semigroup is such that
for all elements x, y x · y = 0, and #P-complete otherwise.

The following lemma will be very useful in the proofs that
follows.

Lemma 22 Let (S, ·) be a semigroup and I be the set of idem-
potents in S. A necessary condition for #EQN∗

S to be tractable
is that the following holds: for all a in I and for all b, c in S,
b · c = b · a · c. Otherwise #EQN∗

S is #P-complete.

Proof: Assume that there exists a in I and that there exists b, c
in S and b · c 6= b · a · c. Consider the relation R = {(x, y)|x · y =
b · a · c}. R is closed under no Mal’tsev operation.

(b, a · c) ∈ R b · a · c = b · a · c
(b · a, a · c) ∈ R b · a · a · c = b · a · c

M (b · a, c) ∈ R b · a · c = b · a · c
(b, c) /∈ R b · c 6= b · a · c

Hence #EQN∗
S is #P-complete. 2

We continue by proving a dichotomy in the case where the semi-
group is a band.

Theorem 23 If (S, ·) is a band, then #EQN∗
S is tractable if

(S, ·) is a rectangular band and #P-complete otherwise.
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Proof: It follows directly from Lemma 22 that if S is a band
that is not a rectangular band then #EQN∗

S is #P-complete. If
(S, ·) is a rectangular band we know from Theorem 15 that there
exist a left zero semigroup (L, ·l) and a right zero semigroup
(R, ·r) such that (S, ·) ∼= (L, ·l)× (R, ·r). Thus the tractability of
#EQN∗

S when (S, ·) is a rectangular band follows from Theorem
19. 2

The following lemma gives us an important necessary condition
for the tractability of #EQN∗

S.

Lemma 24 Given a semigroup (S, ·), it is a necessary condi-
tion for #EQN∗

S to be tractable that (Div(S), ·) form a regular
semigroup. Otherwise #EQN∗

S is #P-complete.

Proof: Arbitrarily choose a ∈ Div(S) and assume that a = b · c
for some b, c. Since S is finite, we know from Theorem 13 that bn

and cm are idempotent for some m,n. From Lemma 22 we know
that a = b · c = b · cm · bn · c = a · cm−1 · bn−1 ·a, otherwise #EQN∗

S

is #P-complete. Thus it is a necessary condition for #EQN∗
S to

be tractable that all elements in Div(S) are regular. 2

Now we can prove a dichotomy #EQN∗
S when (S, ·) is a regular

semigroup.

Theorem 25 Let (S, ·) be a finite regular semigroup. Then,
#EQN∗

S is tractable if (S, ·) is a direct product of an Abelian
group and a rectangular band. Otherwise, #EQN∗

S is #P-comp-
lete.

Proof: If the idempotents in (S, ·) do not form a rectangular
band then by Lemma 22, #EQN∗

S is #P-complete. If the idem-
potents in (S, ·) do form a rectangular band then by Theorem
16, (S, ·) is a direct product of a group and a rectangular band.
We conclude from Theorem 19 that #EQN∗

S is tractable if (S, ·)
is a direct product of an Abelian group and a rectangular band.

51



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 52 — #64

Now assume that (S, ·) is isomorphic to the direct product of
a non-Abelian group by a rectangular band i.e. (S, ·) ∼= (G, ·g)×
(RB, ·b) where (G, ·g) is a non-Abelian group and (RB, ·b) is a
rectangular band. Consider the following relation R = {(x, y)|x ·
y = y ·x}. We show that R is closed under no Mal’tsev operation.
The elements below are chosen as follows, 1 is the identity in
(G, ·g), since (G, ·g) is non-Abelian we know that there exists
elements a, b in G such that a ·g b 6= b ·g a, and c is an arbitrary
element in (RB, ·b).

((a, c), (1, c)) ∈ R (a, c) · (1, c) = (1, c) · (a, c)
((1, c), (1, c)) ∈ R (1, c) · (1, c) = (1, c) · (1, c)

M ((1, c), (b, c)) ∈ R (1, c) · (b, c) = (b, c) · (1, c)
((a, c), (b, c)) /∈ R (a, c) · (b, c) 6= (b, c) · (a, c)

Hence #EQN∗
S is #P-complete when (S, ·) is isomorphic to the

direct product of a non-Abelian group by a rectangular band. 2

The following corollary follows directly from Lemma 24 and The-
orem 25.

Corollary 26 If (S, ·) is a finite semigroup where all elements
have divisors, then #EQN∗

S is tractable if (S, ·) is a direct product
of an Abelian group and a rectangular band, and #P-complete
otherwise.

The following theorem proves a dichotomy for #EQN∗
S when

(S, ·) is a semigroup with zero.

Theorem 27 Let (S, ·) be a finite semigroup with zero, then
#EQN∗

S is tractable if for all x, y in S, x · y = 0, and #P-
complete otherwise.

Proof: The tractability part is proved in Theorem 19. We
continue by proving the #P-completeness of #EQN∗

S when (S, ·)
is a semigroup with zero and there exist two elements a, b in
S such that a · b 6= 0. Consider the following relation R =
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{(x, y)|x · y = 0}. It is easy to see that R is closed under no
Mal’tsev operation.

(a, 0) ∈ R a · 0 = 0
(0, 0) ∈ R 0 · 0 = 0

M (0, b) ∈ R 0 · b = 0
(a, b) /∈ R a · b 6= 0

Hence #EQN∗
S is #P-complete when (S, ·) is a semigroup with

zero and there exist two elements x, y in S such that x · y 6= 0.
2

It is easy to realize that all the conditions we impose on our
semigroups to ensure the tractability (or #P-completeness) of
#EQN∗

S can be checked in polynomial time (in the size of the
semigroups), except maybe for the condition in Theorem 25. To
check whether a semigroup, isomorphic to a direct product of a
group and a rectangular band, is in fact isomorphic to a direct
product of an Abelian group and a rectangular band, we need a
way to extract the group part from the semigroup. Choose an
idempotent x in (S, ·). Then we know that x is of the form (1, x′)
where 1 is the identity in (G, ·g). Consider the set xSx, elements
in this set is of the form (1, x′) · (a, y) · (1, x′) = (a, x′). This
implies that (xSx, ·) ∼= (G, ·g). Now it is easy to check whether
(G, ·g) is Abelian.

Acknowledgments

The authors want to thank Pascal Tesson for interesting discus-
sions and remarks on the topics in this paper, Andrei Bulatov for
many valuable remarks on an earlier version of this paper and
Jorge Almeida for his explanations of some topics in the realm
of semigroups.

53



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 54 — #66

References

[1] A. Bulatov. A dichotomy theorem for constraints on a three-
element set. In Proc. 43rd IEEE Symposium on Foundations
of Computer Science, FOCS’02, pages 649–658, 2002.

[2] A. Bulatov and V. Dalmau. Towards a dichotomy theorem
for the counting constraint satisfaction problem. In Proc.
44th IEEE Symposium on Foundations of Computer Science,
FOCS’03, 2003.

[3] M. Goldmann and A. Russell. The complexity of solv-
ing equations over finite groups. Inform. and Comput.,
178(1):253–262, 2002.

[4] J.M. Howie. Fundamentals of Semigroup Theory. Claredon
Press, Oxford, 1995.

[5] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of
constraints. Journal of the ACM, 44:527–548, 1997.

[6] C. Moore, P. Tesson, and D. Thérien. Satisfiability of systems
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The Complexity of
Equivalence and
Isomorphism of Systems of
Equations over Finite
Groups

Gustav Nordh

Abstract

We study the computational complexity of the isomorphism and equiv-

alence problems on systems of equations over a fixed finite group. We

show that the equivalence problem is in P if the group is Abelian,

and coNP-complete if the group is non-Abelian. We prove that if

the group is non-Abelian, then the problem of deciding whether two

systems of equations over the group are isomorphic is coNP-hard.

If the group is Abelian, then the isomorphism problem is Graph

Isomorphism-hard. Moreover, if we impose the restriction that all

equations are of bounded length, then we prove that the isomorphism

problem for systems of equations over finite Abelian groups is Graph

Isomorphism-complete. Finally we prove that the problem of count-

ing the number of isomorphisms of systems of equations is no harder

than deciding whether there exist any isomorphisms at all.
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1 Introduction

The computational complexity of deciding whether a system of
equations over a fixed finite group is solvable has been studied in
the past. Goldmann and Russell [6] proved that the problem is in
P if the group is Abelian and NP-complete otherwise. This line
of research continued in [8, 11], where the corresponding problem
for finite monoids was given a complete solution. Moreover, some
very interesting results in the general case of finite semigroups
have been proved by Kĺıma et al. in [8]. Note that even the
restricted problem of determining the computational complexity
of solving systems of equations over a fixed regular semigroup is
still open. The problem of deciding whether systems of equations
over a fixed finite group (G, ·) are solvable is denoted by Eqn∗

G

in the literature.
The computational complexity of counting solutions to sys-

tems of equations over a fixed finite semigroup has been studied
in [12], where it is proved that if the semigroup is an Abelian
group, then the problem is in FP, and if the semigroup is a non-
Abelian group, then the problem is #P-complete. This problem
is denoted #Eqn∗

G.
In this paper we study the computational complexity of de-

ciding whether systems of equations over a fixed finite group are
equivalent/isomorphic. More specifically, the equivalence prob-
lem is the problem of deciding whether two systems of equations
have the same set of solutions and the isomorphism problem is
the problem of deciding whether two systems of equations can be
made equivalent by permuting the variables in one of them. We
also study the problem of counting the number of isomorphisms.
These fundamental problems have as far as we know eluded previ-
ous investigations from a computational complexity perspective,
except for some results on the Boolean constraint equivalence
and isomorphism problems, due to Böhler et al. [2, 4], that are
also relevant in our setting. More specifically, the equivalence
problem for systems of equations over the two element group Z2
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where each equation has a bounded number of variable occur-
rences is in P, and the corresponding isomorphism problem is
Graph Isomorphism-complete. Note that in [2, 4] Böhler et
al. only study the equivalence and isomorphism problems for
Boolean constraints over fixed finite constraint languages, and
hence the arity of all constraints involved can be assumed to be
bounded by a constant. This motivates us to additionally study
the complexity of our problems under the restriction that the
number of variables in each equation is bounded by a constant.

The computational complexity of several other isomorphism
and equivalence problems have been intensively studied in the
past, most notably the Graph Isomorphism problem [7], the
formula isomorphism problem [1], and the isomorphism problem
for branching programs [13]. Although there are not many results
in the literature having direct implications for the equivalence
and isomorphism problems for systems of equations, many of
the constructions and proof techniques from [1, 2, 4, 10] can be
reused.

1.1 Definitions and Summary of Results

A system of equations over a fixed finite group (G, ·) is a collec-
tion of equations of the form x1 · x2 · · · · · xk = xk+1 · · · · · xn,
where each xi is either a variable or a constant in G. We will
often use G as a shorthand for (G, ·) and in the case of Abelian
groups we will denote the group operation by +. We also as-
sume that all equations have been simplified so that they do not
contain subexpressions of the type a · b where a and b are group
constants.

The length of an equation is defined to be the number of
variable occurrences in it. A system of equations is said to be of
length k if k is the length of the longest equation in the system.

Example 1 Let S1 be the following system of equations over
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Z3:
x+ x+ y = 2 + z (1)

x+ 2z = 1 (2)
2 + w + 1 + y = z + 2 (3)

Equation (1) is of length 4 (x occurs twice, y and z occur once
each), (2) is of length 3 (2z amounts to two occurrences of z since
2z is just another way of writing z + z), and (3) is of length 3.
Hence S1 is of length 4.

Definition 2 Let S be a system of equations on variables X and
let π be a permutation of X. By π(S) we denote the system of
equations that results when we replace each variable x in S by
π(x).

• Equiv-Eqn∗
G is the problem of deciding whether two sys-

tems of equations S1 and S2 on variables X over G are
equivalent, i.e., whether for every assignment of values in
G to the variables in X, S1 is satisfied if and only if S2

is satisfied. Note that when we say that S1 and S2 are
systems of equations on variables X we only mean that X
is the union of the variables in S1 and S2, hence all vari-
ables in X need not to occur both in S1 and S2. If S1 is
equivalent to S2 we denote this by S1 ≡ S2.

• Iso-Eqn∗
G is the problem of deciding whether two systems

of equations S1 and S2 on variables X over G are isomor-
phic, i.e., whether there exists a permutation π of the vari-
ables in X such that π(S1) ≡ S2. If S1 is isomorphic to S2

we denote this by S1
∼= S2.

• Iso-B-Eqn∗
G,k and Equiv-B-Eqn∗

G,k are the restricted for-
ms of Iso-Eqn∗

G and Equiv-Eqn∗
G respectively, where the

systems of equations have been bounded to have length at
most k.
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• #Iso-Eqn∗
G is the counting version of Iso-Eqn∗

G, i.e., the
problem of counting the number of permutations π of the
variables in X such that π(S1) ≡ S2.

The complexity of Equiv-Eqn∗
G (Iso-Eqn∗

G, #Iso-Eqn∗
G) is

measured in the size of the systems of equations (the size of
G is fixed and does not matter). Note that in all of the prob-
lems described above, each group gives rise to a distinct problem.
Hence we are trying to classify the complexity of infinite classes
of problems. Moreover, the additional restriction that the sys-
tems of equations must have length at most k gives rise to infinite
classes of problems for each fixed group. This framework makes
it possible to give a very fine grained analysis for the complex-
ity of the equivalence and isomorphism problems for systems of
equations over finite groups. Also note that all the problems
above become trivial if the group G is the (trivial) one element
group. Hence when stating our hardness results for problems over
Abelian groups we will always assume that the group involved is
different from the trivial one.

The main results of the paper can be summarized as follows.
We prove that if the group is non-Abelian, then the equivalence
problem is coNP-complete and if the group is Abelian, then the
equivalence problem is in P. As for the isomorphism problem we
prove that if the group is non-Abelian, then the isomorphism
problem is coNP-hard and in ΣP

2
. If the group is Abelian,

then the isomorphism problem is Graph Isomorphism-hard
and in NP. For the restriction of the problems where the length
of all equations are bounded by k, we are able to give a very de-
tailed picture for the complexity of Iso-B-Eqn∗

G,k and Equiv-
B-Eqn∗

G,k. Equiv-B-Eqn∗
G,k is coNP-complete when G is non-

Abelian and k ≥ 3, otherwise Equiv-B-Eqn∗
G,k is in P. Iso-

B-Eqn∗
G,k is in P when k ≤ 2 (for all groups G). If k ≥ 3,

then Iso-B-Eqn∗
G,k is Graph Isomorphism-complete when G

is Abelian, and coNP-hard and in PNP

|| for all non-Abelian
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groups G. Our results on the complexity of Equiv-B-Eqn∗
G,k

and Iso-B-Eqn∗
G,k can be seen as a first attempt to extend

the complexity classification of the equivalence and isomorphism
problems for constraints over fixed finite Boolean constraint lan-
guages to larger domains.

For the problem of counting the number of isomorphisms,
we give an algorithm that shows that it is no harder to count
the number of isomorphisms than to decide whether any isomor-
phisms exist at all. As a corollary to this algorithm we obtain
the result that Iso-Eqn∗

G for Abelian groups is powerless as an
oracle to PP, and that Iso-Eqn∗

G for non-Abelian groups is no
more powerful than an NP-oracle for PP. These results indicate
that Iso-Eqn∗

G for Abelian groups is not NP-complete, and that
Iso-Eqn∗

G for non-Abelian groups is not ΣP

2
-complete.

The paper is organized as follows. In Section 2 we prove
our results concerning the equivalence problem, Section 3 deals
with the isomorphism problem, Section 4 treats the problem of
counting the number of isomorphisms, and finally in Section 5
we present our conclusions and some ideas for future research.

2 Equivalence

In this section we investigate the computational complexity of
Equiv-Eqn∗

G, that is, the problem of deciding whether two sys-
tems of equations over a fixed finite group are equivalent. We
prove that Equiv-Eqn∗

G is coNP-complete if G is non-Abelian,
and that Equiv-Eqn∗

G is in P if G is an Abelian group.
First note that it is easy to see that the equivalence problem

is in coNP.

Theorem 3 Equiv-Eqn∗
G is in coNP.

The following theorem states that if it is hard to decide
whether systems of equations over a group G are solvable, then
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it is also hard to decide whether systems of equations over the
same group are equivalent.

Theorem 4 If Eqn∗
G is NP-complete, then Equiv-Eqn∗

G is
coNP-complete.

Proof: If Eqn∗
G is NP-complete, it follows that it is coNP-

complete to decide whether a system of equations over G is in-
soluble. Since a system of equations is insoluble if and only if it
is equivalent to an insoluble system of equations (for example a
system of equations containing the equation a = b where a and
b are distinct constants in G), it follows that Equiv-Eqn∗

G is
coNP-complete. 2

The previous theorem and the fact that Eqn∗
G is NP-complete

when G is a non-Abelian group [6] immediately implies the fol-
lowing corollary.

Corollary 5 Equiv-Eqn∗
G is coNP-complete when G is a non-

Abelian group.

Next we prove that if it is easy to count the number of solu-
tions to systems of equations over a group G, then it is also easy
to decide whether systems of equations over the same group are
equivalent.

Theorem 6 Equiv-Eqn∗
G is in P if #Eqn∗

G is in FP.

Proof: Let S1 and S2 be two systems of equations. Count the
number of solutions to S1 and S2: if they have different number
of solutions they are not equivalent. Thus we can assume that
S1 and S2 have the same number of solutions. Count the number
of solutions to the system of equations consisting of the union of
S1 and S2. If the number of solutions to this system of equations
equals the number of solutions to S1, then we know that S1 and
S2 have the same set of solutions and hence S1 is equivalent to
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S2, otherwise S1 and S2 have different sets of solutions and thus
are inequivalent. 2

The following corollary follows directly from Theorem 6 and
the fact that #Eqn∗

G is in FP when G is an Abelian group [12].

Corollary 7 Equiv-Eqn∗
G is in P when G is an Abelian group.

It should be clear that Theorems 4 and 6 also hold when
generalized to systems of equations over a fixed finite semigroup
G. Hence interesting results on the complexity of Equiv-Eqn∗

G,
where G is a finite semigroup, can be deduced from the results
for #Eqn∗

G and Eqn∗
G proved in [8, 11, 12]. We collect these

results in the following corollary.

Corollary 8 Equiv-Eqn∗
G is coNP-complete when

• G is a monoid but is not commutative [11].

• G is a monoid but is not a union of Abelian groups [11].

• G is a regular semigroup but is not a strong normal band
of Abelian groups [8].

Equiv-Eqn∗
G is in P when

• G is a direct product of an Abelian group and a rectangular
band [12],

• G is a semigroup with zero, such that for all elements x, y,
x · y = 0 [12].

2.1 Bounded Length

If we restrict the problem and require that all equations are of
bounded length, then we can prove an even tighter correspon-
dence between the complexity of the equivalence problem and
the solvability problem.
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Theorem 9 If Eqn∗
G,k is in P, then Equiv-B-Eqn∗

G,k is in P,
and if Eqn∗

G,k is NP-complete, then Equiv-B-Eqn∗
G,k is coNP-

complete (where Eqn∗
G,k denotes the solvability problem restricted

to systems of equations of length at most k).

Proof: For the tractability part we give a polynomial-time Tur-
ing reduction from Equiv-B-Eqn∗

G,k to Eqn∗
G,k. The reduction

is the same as the one in the proof of [2, Lemma 7]. Let S → E
denote that the equation E can be inferred from the system of
equations S, i.e., there exists no assignment to the variables in
S such that S is satisfied and E is not satisfied. Let S1 and S2

be two systems of equations where all equations are of length at
most k for some constant k. S1 and S2 are equivalent if and only
if S1 → E for every equation E in S2, and S2 → E ′ for every
equation E ′ in S1. Note that it is easy to check whether S1 → E
with at most |G|k queries to Eqn∗

G,k. For every assignment to
the variables in E that does not satisfy E, we check whether this
partial assignment of the variables can be extended to a satisfy-
ing assignment for S1. Of course, S1 → E if and only if none of
these assignments can be extended to a satisfying assignment to
S1.

The coNP-completeness part follows from Theorem 4. 2

Note that the preceding theorem also holds when generalized to
systems of equations over a fixed finite semigroup G.

It is easy to see that equations of length more than 3 can
always be split into equations of length 3 in a solvability pre-
serving manner by introducing new variables. Hence, Eqn∗

G

is polynomial-time reducible to the restricted form where each
equation have at most 3 variable occurrences, i.e., Eqn∗

G is
polynomial-time reducible to Eqn∗

G,3. This observation together
with the preceding theorem and the fact that Eqn∗

G is NP-
complete for non-Abelian groups [6], gives us the following result.

Corollary 10 Equiv-B-Eqn∗
G,k is coNP-complete for all non-

Abelian groups G when k ≥ 3.
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Next we prove that the equivalence problem for systems of
equations of length at most 2 is in P for all groups G.

Theorem 11 Equiv-B-Eqn∗
G,k is in P for all groups G when

k ≤ 2.

Proof: We prove that Eqn∗
G,2 is in P. Hence, the desired result

then follows from Theorem 9. First of all, equations of the form
a = a, where a is a constant from G, are redundant and can
be removed, and if there exists an equation in the system of
equations of the form d = e, where d and e are distinct constants
from G, then clearly the system has no solution. Hence we can
assume that all equations contain at least one variable.

Represent the system of equations S as a graph G with one
vertex for each variable in S and an edge between any pair of
vertices whose corresponding variables occur in the same equa-
tion in S. It should be clear that the connected components in
G corresponds to independent subsystems of S. Obviously S has
a solution if and only if each of these independent subsystems
of equations have a solution. Hence each of these independent
subsystems can be tested for solvability in isolation.

Let S ′ be such a subsystem corresponding to a connected
component in G. Choose an arbitrary variable in S ′, say x. If we
assign a value a ∈ G to x, then each equation where x occurred
will now be either in the form b · y = c or d = e where b, c, d,
and e are (not necessarily distinct) constants from G and y is a
variable. Note that since we are working over a group, equations
of the form b · y = c always have a unique solution. Hence y
will be forced to take a value from G and the propagation can
continue in the same manner until all variables in S ′ have been
assigned. Now if there is an equation in the resulting system of
equations of the form d = e, where d and e are distinct constants
from G, then clearly there exists no solution of S ′ such that a is
assigned to x. Otherwise S ′ has a solution (where a is assigned
to x). Obviously S ′ has a solution if and only if for at least one
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element a ∈ G, there exists a solution where a is assigned to x.
2

3 Isomorphism

In this section we investigate the computational complexity of
Iso-Eqn∗

G, that is, the problem of deciding whether two sys-
tems of equations over a fixed finite group are isomorphic. We
prove that Iso-Eqn∗

G is coNP-hard if G is non-Abelian, and
that Iso-Eqn∗

G is Graph Isomorphism-hard if G is an Abelian
group. If we restrict the problem and demand that all equations
are of bounded length, then Iso-Eqn∗

G in the Abelian case be-
comes Graph Isomorphism-complete, and Iso-Eqn∗

G in the
non-Abelian case is in PNP

|| , i.e., the class of problems solvable
in polynomial time with parallel access to an NP-oracle.

We begin by giving upper bounds for the complexity of the
isomorphism problem.

Theorem 12 Iso-Eqn∗
G is in NP when G is an Abelian group

and Iso-Eqn∗
G is in ΣP

2
when G is a non-Abelian group.

Proof: The NP upper bound for Iso-Eqn∗
G when G is an

Abelian group follows from the results in the previous section
on the equivalence problem. We know from Corollary 7 that
π(S1) ≡ S2 can be decided in polynomial time when G is an
Abelian group, hence Iso-Eqn∗

G is in NP when G is an Abelian
group.

For the ΣP

2
upper bound we nondeterministically choose a

permutation π of the variables in X and use an NP-oracle to
check whether π(S1) ≡ S2. Hence Iso-Eqn∗

G is in NPNP = ΣP
2 .

2

The following theorem states that if it is hard to decide
whether systems of equations over a group G are solvable, then
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it is also hard to decide whether systems of equations over the
same group are isomorphic.

Theorem 13 If Eqn∗
G is NP-complete then Iso-Eqn∗

G is coNP-
hard.

Proof: If Eqn∗
G is NP-complete, then it follows that it is coNP-

hard to decide whether a system of equations over G is insoluble.
Since a system of equations is insoluble if and only if it is iso-
morphic to an insoluble system of equations, e.g., a system of
equations containing the equation a = b where a and b are dis-
tinct constants in G, it follows that Iso-Eqn∗

G is coNP-hard.
2

The previous theorem and the fact that Eqn∗
G is NP-comp-

lete when G is a non-Abelian group [6] immediately implies the
following corollary.

Corollary 14 Iso-Eqn∗
G is coNP-hard when G is a non-Abel-

ian group.

The following theorem indicates that Iso-Eqn∗
G for Abelian

groups perhaps is not in P, or at least that it is hard to prove
that Iso-Eqn∗

G is in P for Abelian groups.

Theorem 15 Let G be a finite Abelian group (different from
the trivial one), then Graph Isomorphism is polynomial-time
many-one reducible to Iso-Eqn∗

G.

Proof: We first show the result for the case where G is a cyclic
group (that is groups of the form Zm, i.e., the integers modulo
m under addition), then we show how to extend this result to all
finite Abelian groups.

Since the group is Abelian, we denote the group operation by
+. As usual we denote the elements of Zm as {0, 1, 2 . . . ,m− 1},
where 0 is the identity element and 1 is the group generator. It
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is known that Graph Isomorphism is polynomial-time equiv-
alent to the Graph Isomorphism problem restricted to bipar-
tite graphs. To reduce the general Graph Isomorphism prob-
lem to the Graph Isomorphism problem restricted to bipartite
graphs; we simply split each edge by introducing a new vertex
as a middle point, and attach a sufficiently large even cycle to
each of these new vertices (forcing middle points to be mapped
to middle points). The resulting bipartite graphs are isomorphic
if and only if the original graphs are isomorphic. To simplify the
proof we assume from now on that all graphs are bipartite and
contain no isolated vertices.

Let T be the following transformation from a graph H =
(V,E), where V = {1, 2, . . . , n} and E = {e1, e2, . . . , em}, to a
system of equations T (H) over G:

T (H) = {xi+xj+yk = 1 | ek = {i, j}}∪{xi+zi+z
′
i = 1 | i ∈ V }.

The variables xi and yk correspond to vertex i and edge ek respec-
tively. The z and z′ variables are used to distinguish x variables
from y variables. This transformation is based on the construc-
tion in the proof of [2, Theorem 25].

Let T (H) → a + b + c = 1 (where a, b, c are variables occur-
ring in T (H)) denote that the equation a + b + c = 1 can be
inferred from the system of equations T (H), i.e., there exists no
assignment to the variables in T (H) such that T (H) is satisfied
and a + b + c = 1 is not satisfied. Note that since G is Abelian,
we (for example) consider a + b + c = 1 as being identical to
b+ a+ c = 1. A maximum set of equations is a set of equations
S such that if S → E then E ∈ S.

The proof of the theorem relies on the following lemma, which
shows that T (H) is a maximum set of equations of the type
a+ b+ c = 1, where a, b, c are distinct variables. More precisely,
the lemma shows that there exists no equation E of length 3
having exactly 3 distinct variables (and no constants) on the
left-hand side and only the constant 1 on the right-hand side,
such that T (H) → E and E /∈ T (H).

69



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 70 — #82

The importance of the property that T (H) is a maximum
set of equations (of type a + b + c = 1), lies in the observation
that two maximum sets of equations are equivalent if and only
if the sets are equal. We will see later that T (H) would not
necessarily be a maximum set of equations of type a+ b+ c = 1
for non-bipartite graphs H.

Lemma 16 The following holds for every triple a, b, c of distinct
variables in T (H): If T (H) → a + b + c = 1, then a + b + c =
1 ∈ T (H).

Proof: The proof is a minor modification of the proof of Lemma
27 in [3] and consists of a careful case analysis. Let X = {xi | i ∈
V }, Y = {yi | ei ∈ E}, and Z = {zi, z

′
i | i ∈ V }. To give the

proof more structure we assume that a ≤ b ≤ c, where ≤ is the
following order on X ∪ Y ∪ Z:

x1 < · · · < xn < y1 < · · · < ym < z1 < · · · < zn < z′1 < · · · < z′n.

With the aim of reaching a contradiction we assume that
there exists a triple a, b, c of distinct variables in T (H) such that
T (H) → a+b+c = 1 and a+b+c = 1 /∈ T (H). In each of the 10
possible cases that arise we show that there exists an assignment
to the variables such that T (H) is satisfied but a + b + c = 1 is
not satisfied.

1. If a, b, and c are in X, then set all variables in X to 0, and
all variables in Y to 1. This assignment can be extended
to an assignment that satisfies T (H) but not a+ b+ c = 1.

2. If a, b are in X, and c is in Y , suppose that c = yk and
let ek = {i, j}. By the assumption that a + b + c = 1
is not in T (H), at least one of a and b is not in {xi, xj}.
Without loss of generality, let a /∈ {xi, xj}. Set a to 1 and
set X \ {a} to 0. Note that such an assignment will force
yk = c to be set to 1. This assignment can be extended to
an assignment satisfying T (H) but not a+ b+ c = 1.
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3. If a, b are in X, and c is in Z, then consider the assignment
that assigns 0 to every variable in Z, 1 to every variable
in X, and |G| − 1 (i.e., m− 1 if the group is Zm) to every
variable in Y . This assignment satisfies T (H) but not a+
b+ c = 1.

4. If a is in X, and b, c are in Y , then set all variables in X
to 0, and all variables in Y to 1. This can be extended to
a satisfying assignment to T (H) but not to a+ b+ c = 1.

5. If a is in X, b is in Y , and c is in Z, then consider the
assignment that assigns 0 to every variable in Z, 1 to every
variable in X, and |G| − 1 to every variable in Y . This
assignment satisfies T (H) but not a+ b+ c = 1.

6. If a is in X, and b, c are in Z, then consider the assignment
that assigns 0 to a, b, and c. We know by assumption that
a + b + c = 1 /∈ T (H), hence this assignment can be ex-
tended to an assignment on X ∪ Z satisfying all equations
in T (H) of the form xi + zi + z′i = 1. Now since all remain-
ing equations in T (H) contain a variable from Y and no
variable in Y occurs in more than one equation, it is easy to
see that this assignment can be extended to an assignment
that satisfies T (H) but not a+ b+ c = 1.

7. If a, b, and c are in Y , then consider the assignment that
assigns 0 to all variables in Y . This assignment can be
extended to a satisfying assignment to T (H) but not to
a + b + c = 1. Note that the fact that the assignment can
be extended follows from the bipartiteness of the graph. A
two coloring of the graph gives an assignment that assigns
1 to exactly one of {xi, xj} for each ek = {i, j} and 0 to all
other elements of X.

8. If a, b are in Y , and c is in Z, then consider the assignment
that assigns 2 to c (0 to c if the group is Z2), 1 to every
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variable in X, and |G| − 1 to every variable in Y . This
assignment can be extended to an assignment that satisfies
T (H) but not a+ b+ c = 1.

9. If a is in Y , and b, c is in Z, let a = ek where ek = {i, j}.
If {b, c} = {zl, z

′
l} for some l, then set xl to 1. In all cases,

set b and c to 0, and for all ek = {i, j} ∈ Y set exactly one
of {xi, xj} to 1 (this could be xl). Set all other elements of
X to 0, and all elements of Y to 0. This assignment can
be extended to an assignment that satisfies T (H) but not
a + b + c = 1. Note again that the existence of such an
assignment to the variables in X follows from the fact that
the graph is bipartite.

10. If a, b, and c are in Z, then consider the assignment that
assigns 0 to every variable in Z, 1 to every variable in X,
and |G|−1 to every variable in Y . This assignment satisfies
T (H) but not a+ b+ c = 1.

Hence if T (H) → a+ b+ c = 1, then a+ b+ c = 1 ∈ T (H). 2

The importance of the fact that T (H) is a maximum set of equa-
tions of the form a + b + c = 1 lies in the observation that
T (H1) ≡ T (H2) if and only if T (H1) = T (H2). Note again that
since G is Abelian we consider a+ b+ c = 1 as being identical to
b + c + a = 1, and so on. Hence T (H1) is isomorphic to T (H2)
if and only if there exists a permutation ρ of the variables in
T (H1) ∪ T (H2) such that ρ(T (H1)) = T (H2).

Let H1 = (V,E) and H2 = (V,E ′) be two bipartite graphs,
with an equal number of vertices and edges, where V = {1, 2, . . . ,
n}, E = {e1, e2, . . . , em}, and E ′ = {e′1, e

′
2, . . . , e

′
m}. We will

prove that there exists an isomorphism π from H1 to H2 if and
only if there exists an isomorphism ρ from T (H1) to T (H2).

Given an isomorphism π from H1 to H2, we construct an
isomorphism ρ from T (H1) to T (H2) as follows. For each i in
V , let ρ(xi) = xπ(i), ρ(zi) = zπ(i), and ρ(z′i) = z′π(i). For each

ek = {i, j} in E, let ρ(yk) = yl where e′l = {π(i), π(j)}.
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To prove the remaining implication, we first need to make
some observations about the different types of variables. If we
are given an isomorphism ρ from T (H1) to T (H2), then as we
have already observed ρ(T (H1)) = T (H2). Now consider the
following distinguishing properties of the variables.

• Variables from X are the only variables that occur at least
twice. So, ρ will be a bijection on X.

• Variables from Z are those variables that occur exactly
once and that occur together with another variable that
occurs exactly once. Hence, ρ will be a bijection also on Z.

• Since ρ is a bijection on both X and Z, it will of course
have to be a bijection also on the variables in Y .

So, given ρ we let π(i) = j if and only if ρ(xi) = xj. Now we
must prove that {i, j} ∈ E if and only if {π(i), π(j)} ∈ E ′. If
ek = {i, j}, then we know that xi+xj+yk = 1 is in T (H1). Hence,
ρ(xi)+ρ(xj)+ρ(yk) = 1 is in T (H2), i.e., xπ(i)+xπ(j)+ρ(yk) = 1 is
in T (H2). Thus we must have ρ(yk) = yl, where e′l = {π(i), π(j)},
so {π(i), π(j)} is an edge in E ′. On the other hand, if {π(i), π(j)}
is an edge in E ′, then xπ(i) + xπ(j) + yl = 1 is in T (H2) (where
e′l = {π(i), π(j)}). This gives us that xi + xj + ρ−1(yl) = 1 must
be in T (H1). Since ρ−1(yl) = yk, where ek = {i, j}, we conclude
that {i, j} ∈ E. Thus π is an isomorphism from H1 to H2 if
and only if ρ is an isomorphism from T (H1) to T (H2). This
completes our proof that Graph Isomorphism is polynomial-
time many-one reducible to Iso-Eqn∗

G where G is a finite cyclic
group.

By using the fundamental theorem of finitely generated Abel-
ian groups it is possible to extended this result to all finite
Abelian groups. Note that all finite Abelian groups are of course
finitely generated.

Lemma 17 (See, [9]) Every finite Abelian group G is isomor-
phic to a direct product of cyclic groups in the form Zp

r1
1
×Zp

r2
2
×
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· · · × Zp
rn
n

, where the pi’s are (not necessarily distinct) primes,
and |G| = pr11 · · · · · prnn .

Thus given a system of equations S1 over a finite Abelian group
G, we can use the fundamental theorem of finitely generated
Abelian groups to view it as n independent systems of equations,
each over a cyclic group Zp

ri

i

. Given a group G ∼= Zp
r1
1
× Zp

r2
2
×

· · ·×Zp
rn
n

, denote the element 1pr1
1
× 1pr2

2
×· · ·× 1prn

n
in G by 1G,

where 1pri

i

denotes the element 1 in Zp
ri

i

. Let T (H1)
′ and T (H2)

′

denote the systems of equations over G obtained from T (H1) and
T (H2) by replacing all occurrences of 1 by 1G.

We have proved above that there exists an isomorphism π
from H1 to H2 if and only if there exists an isomorphism ρ from
T (H1) to T (H2) regardless of which finite cyclic group the sys-
tems of equations are defined over. Moreover, if ρ is an iso-
morphism from T (H1) to T (H2) then ρ(T (H1)) = T (H2), and
of course ρ(T (H1)

′) = T (H2)
′ (i.e., T (H1)

′ ∼= T (H2)
′). Con-

versely, if there exists an isomorphism ρ′ from T (H1)
′ to T (H2)

′

(i.e., ρ′(T (H1)
′) ≡ T (H2)

′), then ρ′(T (H1)) ≡ T (H2) (for all
Zp

ri

i

∈ {Zp
r1
1
,Zp

r2
2
, . . . ,Zp

rn
n
}, and hence all finite cyclic groups).

Hence given a finite Abelian group G and two graphs H1 and
H2, then H1 is isomorphic to H2 if and only if the two systems
of equations T (H1)

′ and T (H2)
′ over G are isomorphic. 2

Despite intensive research Graph Isomorphism is not kno-
wn to be in coNP. Hence, in light of the previous theorem, it
seems hard to prove that Iso-Eqn∗

G is in coNP when G is an
Abelian group.

3.1 Bounded Length

If we restrict the isomorphism problem and require that all equa-
tions are of bounded length, then we can prove an even tighter
correspondence between the complexity of Iso-Eqn∗

G,k and Gra-
ph Isomorphism.
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Theorem 18 Iso-B-Eqn∗
G,k is Graph Isomorphism-complete

under polynomial-time many-one reductions when G is an Abelian
group (different from the trivial one) and k ≥ 3.

Proof: It follows from the proof of Theorem 15 that Graph
Isomorphism is polynomial-time many-one reducible to Iso-B-
Eqn∗

G,k for Abelian groups G and k ≥ 3. Hence what remains
is to give a polynomial-time many-one reduction from Iso-B-
Eqn∗

G,k to Graph Isomorphism. We will actually give a reduc-
tion from Iso-B-Eqn∗

G,k to the Graph Isomorphism-complete
problem vertex colored graph isomorphism (VCGI) [7]. Our re-
duction is a minor modification of the reduction in the proof of
Claim 22 from Böhler et al. [2] and our proof closely follows
theirs.

Definition 19 VCGI is the problem of, given two vertex-colored
graphs H1 = (V1, E1, χ1), H2 = (V2, E2, χ2), with χ1, χ2: V → N,
to determine whether there exists an isomorphism from H1 to
H2 that preserves colors, i.e., whether there exists a bijection π :
V1 → V2 such that {v, v′} ∈ E1 if and only if {π(v), π(v′)} ∈ E2,
and χ1(v) = χ2(π(v)) for all v ∈ V1.

Let S1 and S2 be two systems of equations of bounded length
over an Abelian group G on variables X. The case where at least
one of S1 and S2 are not solvable is trivially reducible to Graph
Isomorphism. Hence we can assume that both S1 and S2 are
solvable. We will first bring S1 and S2 into normal form. We
choose an approach similar to that in Theorem 15 and reduce S1

and S2 to the maximum set of equations of length at most k that
can be inferred from S1 and S2, respectively. Since both S1 and
S2 are solvable we can assume that all equations only containing
constants have been removed. Moreover, we assume that all
equations have been reduced in such a way that they contain
no constants from G except for in the right-most position on the
right-hand side (if an equation should lack a constant we add 0 to
it, where 0 denotes the identity in G). Since the group is Abelian
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this reduction is trivial and the resulting system of equations is
of course equivalent to the original one. We call equations of this
particular form reduced equations.

Let 〈S1〉 denote the set of all reduced equations E of length
at most k such that all of E’s variables occur in X and S1 → E.
It should be clear that S1 is equivalent to 〈S1〉, since S1 ⊆ 〈S1〉
and S1 → 〈S1〉. We define 〈S2〉 analogously. Note that 〈S1〉 and
〈S2〉 can be computed in polynomial time (in |S1| + |S2|), since
there exist at most O(|X|k) reduced equations E of length at
most k such that all of E’s variables occur in X, and since G is
Abelian we can use the polynomial-time algorithm for Eqn∗

G to
decide whether S → E. Note that S → E if and only if for every
assignment to the variables in E such that E is not satisfied,
this assignment applied to S makes S insoluble. There is at
most O(|G|k) possible assignments of the variables in E. Testing
whether or not such an assignment makes S insoluble can be
done in polynomial time (by the result in [6]). So, it follows that
S → E can be decided in polynomial time. It should be clear
that if 〈S1〉 is equivalent to 〈S2〉 then 〈S1〉 = 〈S2〉, hence if π is
a permutation of the variables in X such that π(〈S1〉) ≡ 〈S2〉,
then π(〈S1〉) = 〈S2〉.

Now we proceed and reduce 〈S1〉 and 〈S2〉 to vertex-colored
graphs H1 and H2 such that 〈S1〉 ∼= 〈S2〉 if and only if (H1, H2) ∈
V CGI.

Let 〈S1〉 consist of the equations A1, . . . , Am, i.e.,

x11 + x12 + · · · + x1j1 = x1j1+1 + · · · + x1k1 + c1 (A1)
x21 + x22 + · · · + x2j2 = x2j2+1 + · · · + x2k2 + c2 (A2)

...
xm1 + xm2 + · · · + xmjm = xmjm+1 + · · · + xmkm

+ cm (Am)

Let T (〈S1〉) = H1 = (V,E, χ) be the following vertex-colored
graph:

• V = {g0, g1, . . . , g|G|−1} ∪ {x | x ∈ X} ∪ {aij | 1 ≤ i ≤
m, 1 ≤ j ≤ ki + 1}∪ {Ai | 1 ≤ i ≤ m}. Hence, the set of
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vertices corresponds to the elements in G, the variables in
X, the elements in the equations in 〈S1〉, and the equations
in 〈S1〉.

• E = {{x, aij} | x = aij} ∪ {{c, aij} | c = aij} ∪ {{aij, Ai} |
1 ≤ i ≤ m, 1 ≤ j ≤ ki+1}. Thus, the edges indicate which
variables and constants that occur in a given equation.

• The vertex coloring χ is used to distinguish the different
categories of vertices. Of course, we must allow any per-
mutation of the variables, so all vertices corresponding to
variables in X are assigned the same color. We also need
to allow the permutation of vertices corresponding to equa-
tions, and because the group is Abelian we allow the per-
mutation of vertices corresponding to elements within the
same side of each equation.

– χ(gi) = i, i.e., if ct = gi then χ(ct) = i,

– χ(x) = |G| for all x ∈ X,

– χ(Ar) = |G| + 1,

– χ(aij) = |G| + 2 if j ≤ ji,

– χ(aij) = |G| + 3 if ki ≥ j > ji,

– χ(aij) = |G| + 4 if j = ki + 1.

Define T (〈S2〉) = H2 in the analogous way.
Given a permutation π of X such that π(〈S1〉) = 〈S2〉, then it

is easily realized that (T (〈S1〉), T (〈S2〉)) ∈ V CGI. For the con-
verse, given a permutation π on T (〈S1〉) witnessing the fact that
(T (〈S1〉), T (〈S2〉)) ∈ V CGI, then we have π(〈S1〉) = 〈S2〉. Just
note that any permutation of vertices corresponding to equa-
tions forces a permutation of the vertices corresponding to ele-
ments in the equations. Thus if π(Ai) = Aj then we must have
π(ait) = ajs, for all 1 ≤ t ≤ ki + 1 and some 1 ≤ s ≤ kj + 1. Also
note that because of the coloring, π is the identity mapping on
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vertices corresponding to constants. Hence, the only thing left
is the permutation of vertices corresponding to variables in X.
Thus we have π(〈S1〉) = 〈S2〉. 2

Using the same idea as in the proof of the preceding the-
orem we can prove a tighter upper bound for Iso-B-Eqn∗

G,k,

compared to the trivial ΣP

2
upper bound for non-Abelian groups

from Theorem 12. More specifically we prove that Iso-B-Eqn∗
G,k

for non-Abelian groups is in PNP

|| , the class of problems solvable
in polynomial time with parallel (i.e., truth-table) access to an
NP-oracle. This result is analogous to Corollary 23 in [2] and
the proof is the same.

Theorem 20 Iso-B-Eqn∗
G,k is in PNP

|| .

Proof: Let S1 and S2 be two systems of equations on variables
X over a non-Abelian group G. We use the same normal form
as in the proof of the preceding theorem, i.e., we compute 〈S1〉
and 〈S2〉. Following the proof of the preceding theorem it is easy
to verify that 〈S1〉 and 〈S2〉 can be computed in polynomial time
with parallel access to an NP-oracle. Now the existence of a
permutation π of the variables in X such that π(〈S1〉) = 〈S2〉
can be determined with one query to an NP-oracle. Hence, it
can be decided in polynomial time with two rounds of parallel
queries to NP whether S1 and S2 are isomorphic, and thus by
the results in [5] it follows that Iso-B-Eqn∗

G,k is in PNP

|| . 2

Böhler et al. [4] have proved that the isomorphism problem
for systems of equations having length at most 2 over the group
Z2 can be solved in polynomial time. We prove that the isomor-
phism problem for systems of equations of length at most 2 is in
P for all groups.

Theorem 21 Iso-Eqn∗
G,k is in P for all groups G when k ≤ 2.
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Proof: We know from the proof of Theorem 11 that we can
check in polynomial time whether systems of equations of length
at most 2 are solvable. If neither S1 nor S2 are solvable, then
they are of course isomorphic, and if just one of S1 and S2 are
solvable, then they are not isomorphic. Hence we can assume
that both S1 and S2 are solvable.

Remember from the proof of Theorem 11 that we can repre-
sent the system of equations Si, i ∈ {1, 2}, as a graph Gi with one
vertex for each variable in Si and an edge between any pair of ver-
tices whose corresponding variables occur in the same equation
in Si. It should be clear that the connected components in Gi

correspond to independent subsystems of Si. Note that since Si
has a solution, so do each of these independent subsystems of Si.
In fact we know, from the proof of Theorem 11, how to compute
in polynomial time all the solutions of each of these subsystems
and that they have at most |G| solutions each. Moreover, for any
two different solutions α and β of such a subsystem, α(x) 6= β(x)
hold for all variables x in the subsystem. As we will see, this is
the key of the proof.

We begin by treating subsystems having a unique solution.
Let X1 and X2 be the set of all variables occurring in subsystems,
of S1 and S2 respectively, having a unique solution. Let α1 and
α2 be the partial solutions, to S1 and S2 respectively, that are
induced by the subsystems having a unique solution. It is easy
to check whether there exists a bijective mapping πFIXED from
X1 to X2 such that for all variables x ∈ X1, if πFIXED(x) = x′

then α1(x) = α2(x
′). If no such mapping πFIXED exists, then

clearly S1 ≇ S2. On the other hand, if S1
∼= S2, then there

exists an isomorphism π from S1 to S2 such that π and πFIXED
agree on the variables in X1. Hence, we can assume that each
independent subsystem of S1 and S2 have at least 2 solutions.

Next we show how to check in polynomial time whether two
independent subsystems, IS1 and IS2 corresponding to connected
components of G1 and G2 respectively, are isomorphic. Let Y1
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and Y2 be the set of variables that occur in IS1 and IS2 respec-
tively. If IS1 and IS2 have a different number of solutions or
|Y1| 6= |Y2|, then IS1 ≇ IS2. So we assume that IS1 and IS2

have the same number of variables and solutions. Represent the
m (m ≤ |G|) solutions of IS1 as a m × |Y1| matrix M1 where
the rows of M1 are just the solutions of IS1. Define the matrix
M2, corresponding to the solutions of IS2, in the analogous way.
Now, if there exists a permutation of the rows and columns of
M1 (yielding a matrix M ′

1) such that M ′
1 = M2, then clearly

IS1
∼= IS2. If no such permutation exists, then it is easy to see

that IS1 ≇ IS2. The existence of such a permutation can be de-
termined in polynomial time since the number of permutations
of the rows in M1 is bounded by the constant |G|!. After each
such permutation it can be checked whether the resulting matrix
M ′′

1 admits a permutation of the columns, yielding a matrix M ′
1

such that M ′
1 = M2 (e.g., by sorting the columns in M ′′

1 and M2

in lexicographical order and checking for identity).
Now, we prove that if there exists an independent subsystem

IS1 of S1 (corresponding to a connected component of G1) such
that IS1 is not isomorphic to any of the independent subsystems
of S2 (corresponding to connected components of G2), then S1 ≇
S2. Assume the contrary, i.e., that IS1 is not isomorphic to any of
the independent subsystems of S2 but there exists a permutation
π such that π(S1) ≡ S2. Two cases emerge, either the variables
in IS1 are mapped, by π, to the variables occurring in a single
independent subsystem of S2, or they are mapped to variables
from more than one independent subsystem in S2.

If the variables in IS1 are mapped, by π, to the variables in
a single subsystem, IS2, of S2, then there must be a variable x
in IS2 that does not occur in π(IS1) (otherwise we get a contra-
diction with the assumption that IS1 ≇ IS2 and π(S1) ≡ S2).
Now, if we assign a value a to a variable y in π(IS1), then in
IS2, x will be forced to take a value b. By the assumption that
π(S1) ≡ S2, we have that x must occur in a subsystem of S1

80



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 81 — #93

(having at least two solutions) that is independent of IS1. So
π(S1) has a solution where a is assigned to y and c is assigned to
x, where c 6= b, again contradicting π(S1) ≡ S2.

In the second case π(IS1) contains variables from two differ-
ent independent subsystems of S1. Any solution of π(IS1) forces
a solution to these independent subsystems of S2. But again
since these subsystems of S2 have more than one solution each,
there exists a solution to S2 not satisfying π(S1) (contradicting
π(S1) ≡ S2).

The outline of the polynomial-time algorithm for solving Iso-
Eqn∗

G,2 should now be clear. For each independent subsystem,
IS1 of S1 corresponding to a connected component in G1, check
whether there exists an independent subsystem, IS2 of S2 corre-
sponding to a connected component in G2, such that IS1

∼= IS2.
If no such subsystem IS2 exists, then we conclude that S1 ≇ S2.
Otherwise remove IS1 and IS2 from S1 and S2 respectively, and
continue with the next independent subsystem of S1. When all
independent subsystems of S1 corresponding to connected com-
ponents ofG1 have been checked, without reaching the conclusion
that S1 ≇ S2, then we know that S1

∼= S2. 2

4 Counting Isomorphisms

Mathon [10] showed that the counting version of Graph Iso-
morphism is polynomial time Turing reducible to the decision
version. Thus, Graph Isomorphism behaves differently than
the known NP-complete problems, because their counting ver-
sions seems much harder than their decision versions. This was
historically the first hint that Graph Isomorphism might not
be NP-complete. We prove analogous results for #Iso-Eqn∗

G.
Given a system of equations S on variables X over a finite

group G, we are interested in the set of permutations π of the
variables inX such that π(S) ≡ S. It is easy to see that this set of
permutations forms a group, denoted aut(S), the automorphism
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group of S. #Aut-Eqn∗
G is the problem of counting the number

of automorphisms of a system of equations S over G. That is,
computing |aut(S)|.

Lemma 22 #Aut-Eqn∗
G is Turing reducible to Iso-Eqn∗

G.

Proof: First note that we can determine whether a system of
equations S is solvable or not by making a single query to Iso-
Eqn∗

G. If S is insoluble, then of course |aut(S)| = |X|!, where X
is the set of variables occurring in S.

We call variables xi and xj equivalent with respect to S if,
for any assignment α that satisfies S, we have α(xi) = α(xj).
By ES(xi) we denote the set of variables in S that are equivalent
to xi. Consider any automorphism ρ ∈ aut(S), if ρ maps xi to
xk, then clearly ρ(ES(xi)) = ES(xk); moreover, each bijection
from ES(xi) to ES(xk) can be extended to an automorphism of
S. Note that when S is a system of equations over an Abelian
group, then the sets ES(xi) for all xi in X, can be computed in
polynomial time: just check whether or not S ≡ S ∪ {xi = xj}
for all xj in X (remember that by Corollary 7 we know that
equivalence of systems of equations over Abelian groups is in
P). In the case where S is a system of equations over a non-
Abelian group we can use an NP-oracle to check whether or
not S ≡ S ∪ {xi = xj} for all xj in X. Since Iso-Eqn∗

G for
non-Abelian groups is coNP-hard, we can in particular use this
method when we have Iso-Eqn∗

G as an oracle.
The notion of equivalence of variables is an equivalence rela-

tion on X. For each equivalence class choose a variable in that
class, say xi, and replace all occurrences of the variables from
ES(xi) by xi in S. The resulting system of equations S ′ is de-
fined on the set of variables I corresponding to the equivalence
classes of X. The number of permutations ρ of X such that
ρ(S) ≡ S is equal to

|aut(S ′)|
∏

xi∈I

|ES(xi)|!.
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Hence what remains to be done is to compute |aut(S ′)|, i.e., the
number of permutations π of I such that π(S ′) ≡ S ′.

We need a construction that forces a variable to be mapped
to itself under any permutation ρ of I, such that ρ ∈ aut(S ′).
We use the same construction as the one used in the proof of [1,
Lemma 5.1] to achieve this goal.

Note that ρ always maps xi to a variable xk such that |ES′(xi)|
= |ES′(xk)|. The idea is to make |ES′(xi)| unique by introducing
new equations of the form xi = zij, where zij is a new vari-
able called a labelling variable. Recall that S ′ was constructed
from S by eliminating all equivalent variables. Hence, for each
xi in I = {x1, . . . , xn} we have |ES′(xi)| = 1. Let L(xi) de-
note

⋃i

j=1{xi = zij}, and S ′
[I] the system of equations that is

constructed as follows,

S ′
[I] = S ′ ∪

⋃

xi∈I

L(xi).

Now with the technicalities of the labelling out of the way, we
can proceed to compute |aut(S ′)|. Let S ′

[x1,...,xn] be the system of

equations (corresponding to S ′) where all variables have been la-
belled in the way described above. Let autid(S

′
[I]) denote the set

(group) of automorphisms of S ′
[I] that acts as the identity map-

ping on all labelling variables. Hence, |autid(S
′
[x1,...,xn])| = 1 and

autid(S
′) = aut(S ′). The key for computing |aut(S ′)| lies in the

fact that |autid(S
′
[x1,...,xi−1])| = di|autid(S

′
[x1,...,xi−1,xi]

)|, where di is

the size of the orbit of xi under the action of autid(S
′
[x1,...,xi−1]).

Recall that the orbit of xi under the action of autid(S
′
[x1,...,xi−1])

is the set {ρ(xi) | ρ ∈ autid(S
′
[x1,...,xi−1])}. Let di be the size of the

orbit oi of xi under the action of autid(S
′
[x1,...,xi−1]), and let φk (1 ≤

k ≤ di) be an automorphism in autid(S
′
[x1,...,xi−1]) which maps

xi to the k-th variable in oi. Every ρ ∈ autid(S
′
[x1,...,xi−1]

)} can

be decomposed as a product of a unique φ ∈ {φ1, . . . , φdi
} and

a unique τ ∈ autid(S
′
[x1,...,xi−1,xi]

). Hence, |autid(S
′
[x1,...,xi−1])| =

di|autid(S
′
[x1,...,xi−1,xi]

)|. It should be clear that |aut(S ′)| equals
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d1d2 . . . dn. The fact that the order of a permutation group can
be computed from the size of the orbits in the way described
above is a standard result from group theory, see for example [7]
for details.

The orbit of xi under autid(S
′
[x1,...,xi−1]) can be found by mak-

ing n − i queries to Iso-Eqn∗
G. Ask the query S ′

[x1,...,xi−1][xi]
∼=

S ′
[x1,...,xi−1]

[xj] for each variable xj, j ≥ i, where S ′
[x1,...,xi−1][xi]

and S ′
[x1,...,xi−1][xj] denotes systems of equations where xi and xj

have been assigned the same (unique) label (using the method
described above). If the answer is yes, we know that xj is in the
orbit of xi under autid(S

′
[x1,...,xi−1]

). Hence |aut(S ′)| = d1d2 . . . dn
can be computed by making O(n2) queries to Iso-Eqn∗

G. This
completes the proof of the fact that #Aut-Eqn∗

G is Turing re-
ducible to Iso-Eqn∗

G. 2

The following theorem states that it is no harder to count
the number of isomorphisms between two systems of equations
over a fixed finite group than to decide whether an isomorphism
exists at all. This indicates that Iso-Eqn∗

G is not NP-complete
for Abelian groups, and that Iso-Eqn∗

G is not ΣP

2
-complete for

non-Abelian groups.

Theorem 23 #Iso-Eqn∗
G is Turing equivalent to Iso-Eqn∗

G.

Proof: The proof is based on the same principle as the analo-
gous proof for Graph Isomorphism due to Mathon [10]. For
Mathon’s arguments to work, we need to make sure that all vari-
ables in X occur in both S1 and S2. This can be easily achieved
by padding S1 (S2) with (dummy) equations of the form x = x,
for all variables x that are in X but do not occur in S1 (S2). De-
note the padded systems by S ′

1 and S ′
2 respectively. It should

be clear that the number of permutations π of X such that
π(S1) ≡ S2 equals the number of permutations π of X such
that π(S ′

1) ≡ S ′
2. Hence we will assume from now on that all

variables in X occur both in S1 and S2.
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Of course Iso-Eqn∗
G is trivially polynomial-time reducible to

#Iso-Eqn∗
G. The rest of the proof will be spent on establishing

a polynomial-time Turing reduction from #Iso-Eqn∗
G to Iso-

Eqn∗
G. Let N1 be the number of permutations π of X such

that π(S1) ≡ S2. If S1 is not isomorphic to S2, i.e., there exists
no permutation π of X such that π(S1) ≡ S2, then N1 = 0.
Otherwise, N1 = |aut(S1)| = |aut(S2)|. This can be realized by
noting that if π is a permutation such that π(S1) ≡ S2, and ρ ∈
aut(S1), then ρ◦π is also a permutation such that ρ◦π(S1) ≡ S2

(note that ρ◦π denotes the composition where ρ is applied prior
to π, hence ρ ◦ π(S1) = π(ρ(S1))). In addition, any permutation
π′ such that π′(S1) ≡ S2 can be uniquely expressed as π′ = ρ′ ◦π,
where ρ′ ∈ aut(S1). Thus, the set of isomorphisms from S1 to S2

is the right coset, aut(S1) ◦ π, where π is an isomorphism from
S1 to S2. Hence, it follows from Lemma 22 that #Iso-Eqn∗

G is
Turing reducible to Iso-Eqn∗

G. 2

Mathon’s algorithm for computing the number of isomor-
phisms of two graphs, has the interesting property that at each
intermediate stage the number of isomorphisms of the labelled
graphs are known. This property has been exploited to prove
that Graph Isomorphism (GI) is low for PP, i.e., Graph Iso-
morphism is powerless as an oracle to PP (PPGI = PP) [7].
This is generally interpreted as further evidence for the hypoth-
esis that Graph Isomorphism is not NP-complete. For the
details and significance of lowness results, again consult [7]. The
properties of our algorithm (that is based on Mathon’s algorithm)
for computing #Iso-Eqn∗

G together with the same argument as
that preceding Theorem 5.3 in [1] implies the following lowness
results.

Corollary 24 PPIAb = PP, and PPIG = PPNP, where IAb
denotes Iso-Eqn∗

G for Abelian groups and IG denotes Iso-Eqn∗
G

for non-Abelian groups.

Hence Iso-Eqn∗
G for Abelian groups is powerless as an oracle to
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PP, and Iso-Eqn∗
G for non-Abelian groups is no more powerful

than an NP-oracle for PP.

5 Conclusions

We give dichotomies (under the assumption that coNP6=P) for
the complexity of Equiv-Eqn∗

G and Equiv-Eqn∗
G,k for all finite

groups G and constants k. A natural direction for future re-
search would be to prove similar dichotomies for Equiv-Eqn∗

G

and Equiv-Eqn∗
G,k for all finite semigroups G and constants k.

But, in light of the recent results in [8], we must say that these
problems seem very challenging.

As for the complexity of Iso-Eqn∗
G, the situation is not as

clear. We prove that the problem is in ΣP

2
and coNP-hard in the

non-Abelian case, and that it is in NP and Graph Isomorph-
ism-hard in the Abelian case. But the results in Theorem 23 and
Corollary 24 give strong indications that these upper bounds
(ΣP

2
and NP respectively) are not tight. For the isomorphism

problem for systems of equations of bounded length, we prove
that Iso-B-Eqn∗

G,k is in P when k ≤ 2 (for all groups G). If
k ≥ 3, then Iso-B-Eqn∗

G,k is Graph Isomorphism-complete
when G is Abelian (and different from the trivial group), and
coNP-hard and in PNP

|| for all non-Abelian groups G.
Our results for the complexity of the equivalence and iso-

morphism problems for systems of equations over finite groups
complement the complexity results for deciding solvability and
counting solutions to systems of equations over finite groups pre-
sented in [6, 12]. The equivalence and isomorphism problems for
systems of equations over finite groups are natural special cases
of the equivalence and isomorphism problems for constraints over
finite domains. Hence, our results can also be seen as a first at-
tempt of generalizing the results due to Böhler et al. [2, 4] on
the complexity of the equivalence and isomorphism problems for
Boolean constraints.
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It is interesting to observe that so many of the constructions
and proof techniques previously used in the literature in relation
to other isomorphism problems (e.g., [1, 2, 4, 10]) can be reused.
This seems to suggest that a more unified treatment of these and
similar isomorphism problems is possible.

Another question left open by the present paper is that of the
relative complexity of the isomorphism problems, e.g., it is far
from clear whether or not there exists a polynomial-time reduc-
tion from Iso-Eqn∗

G to Iso-B-Eqn∗
G,k for some constant k.

Moreover, it has been proved by the use of interactive proofs,
that Graph Isomorphism and formula isomorphism are not
NP-complete and ΣP

2
-complete respectively, unless the polyno-

mial hierarchy collapses [1, 7]. It would be interesting to investi-
gate whether similar techniques can be used to prove analogous
results for Iso-Eqn∗

G.
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An Algebraic Approach
to the Complexity of
Propositional
Circumscription

Gustav Nordh and Peter Jonsson

Abstract

Every logical formalism gives rise to two fundamental problems: model

checking and inference. Circumscription is one of the most important

and well-studied formalisms in the realm of nonmonotonic reasoning.

The model checking and inference problem for propositional circum-

scription has been extensively studied from the viewpoint of compu-

tational complexity. We use a new approach based on algebraic tech-

niques to study the complexity of the model checking and inference

problems for propositional variable circumscription in a unified way.

We prove that there exists a dichotomy theorem for the complexity of

the inference problem in propositional variable circumscription. We

also study the model checking and inference problem for propositional

variable circumscription in many-valued logics using the same alge-

braic techniques. In particular we prove dichotomy theorems for the

complexity of model checking and inference for propositional variable

circumscription in the important case of 3-valued logic.
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1 Introduction

Circumscription, introduced by McCarthy [17], is perhaps the
most well developed and extensively studied formalism in non-
monotonic reasoning. The key intuition behind circumscription
is that by focusing on minimal models of formulas we achieve
some degree of common sense, because minimal models have as
few ”exceptions” as possible.

Propositional circumscription in Boolean logic is the basic
case of circumscription in which satisfying truth assignments of
propositional formulas are partially ordered according to the co-
ordinatewise partial order ≤ on Boolean vectors, which extends
the order 0 ≤ 1 on {0, 1}. In propositional variable circumscrip-
tion only a certain subset of the variables in formulas are subject
to minimization, others must maintain a fixed value or are sub-
ject to no restrictions at all. Given a propositional Boolean for-
mula T and a partition of the variables in T into three (possibly
empty) disjoint subsets (P ;Z;Q) where P is the set of variables
we want to minimize, Z is the set of variables allowed to vary
and Q is the set of variables that must maintain a fixed value,
we define the partial order on satisfying models as follows. Let
α, β be two models of T , then α ≤(P ;Z) β if α and β assign the
same value to the variables in Q and for every variable p in P ,
α(p) ≤ β(p) (moreover if there exist a variable p in P such that
α(p) 6= β(p), we write α <(P ;Z) β). A minimal model of a for-
mula T is a satisfying model α such that there exist no satisfying
model β where β <(P ;Z) α.

We will from now on call the restricted form of propositional
circumscription where all variables are subject to minimization
(that is Q = Z = ∅) for basic circumscription, and the more
general propositional variable circumscription for propositional
circumscription.

Every logical formalism gives rise to two fundamental decision
problems: model checking and inference. In the case of proposi-
tional circumscription in Boolean logic the model checking and
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inference problems can be formulated as follows.

• Model checking: Given a propositional Boolean formula
T , a partition of the variables in T into three disjoint sub-
sets (P ;Z;Q) and a truth assignment α, is α a minimal
model of T .

• Inference: Given two propositional Boolean formulas T
and T ′ and a partition of the variables in T into three
disjoint (possibly empty) subsets (P ;Z;Q), is T ′ true in
every minimal model of T . If T ′ is true in every minimal
model of T , we denote this by T �CIRC T

′.

The formulas T and T ′ are assumed to be given in conjunctive
normal form. It is easy to realize that the inference problem
is polynomial-time equivalent to the case where T ′ is a single
clause, since T ′ can be inferred from T under propositional cir-
cumscription if and only if each clause of T ′ can be so inferred.

The inference problem for propositional circumscription is
known to have strong connections to the inference problem under
closed world assumptions. More specifically the inference prob-
lem for propositional Boolean logic under extended closed world
assumption (ECWA) is equivalent to the inference problem for
propositional circumscription in Boolean logic [12].

The inference and model checking problems for circumscrip-
tion in propositional Boolean logic are very well-studied from the
computational complexity perspective [5, 6, 7, 10, 11, 14, 15].
The model checking problem for propositional circumscription
in Boolean logic has been proved to be coNP-complete [5]. The
inference problem for propositional circumscription in Boolean
logic has been proved to be ΠP

2
-complete [11]. These results dis-

play a dramatic increase in the computational complexity com-
pared to the case of ordinary propositional Boolean logic, where
the model checking problem is solvable in linear time and the in-
ference problem is coNP-complete [8]. These negative results
raise the problem of identifying restricted cases in which the
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model checking and inference problem for propositional circum-
scription have computational complexity lower than the general
case.

The most natural way to study such restrictions is to study
restrictions on the formulas representing knowledge bases, de-
noted T in above. This is also the approach followed in most of
the previous research in the area. Hence in the case of restric-
tions of the inference problem, we only restrict the formula T
while T ′ are subject to no restrictions.

The ultimate goal of this line of research is to determine
the complexity of every restricted special case of the problem.
The first result of this type was proved by Schaefer [19], who
succeeded in obtaining a complete classification of the satisfia-
bility problem in propositional Boolean logic. He proved that
every special case of the satisfiability problem in propositional
Boolean logic either is tractable or NP-complete (note that this
implies that the inference problem in propositional Boolean logic
is either tractable or coNP-complete). Recall the result due to
Ladner [16] that if P 6= NP, then there exist decision problems
in NP that are neither tractable nor NP-complete. Hence the
existence of dichotomy theorems like Schaefer’s cannot be taken
for granted. Schaefer raised the question of the existence of di-
chotomy theorems for the complexity of the satisfiability problem
in propositional many-valued logics. Despite intensive research
on this problem, progress has been annoyingly slow. Not until
recently a dichotomy theorem for the complexity of the satisfia-
bility problem in 3-valued logics was proved [1].

In the case of the complexity of circumscription in proposi-
tional logic, the situation is even more unsatisfying. Recently a
dichotomy theorem was proved for the complexity of the model
checking problem in the Boolean case [15]. Moreover for the case
of basic circumscription (where Q = Z = ∅) in Boolean logic, it
has been proved that every special case of the inference problem
is either ΠP

2
-complete or lies in coNP [14]. In the case of the
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complexity of circumscription in propositional many-valued log-
ics, to the best of our knowledge, nothing is known neither on
the model checking problem nor the inference problem.

In this paper we try to remedy this situation by investigating
in a unified way the complexity of circumscription in proposi-
tional many-valued logics in general and the complexity of cir-
cumscription in propositional 3-valued logics in particular. This
investigation is motivated by the fact that in many real world
AI applications it is necessary to reason with incomplete or con-
tradicting information. Consider for example the operation of
an autonomous agent that has to cope with incomplete informa-
tion of the world and contradicting information from its sensors.
We could represent incomplete or contradicting information by
introducing a new truth value, 1

2
. Now if we want to use cir-

cumscription in the process of reasoning we just have to give a
suitable partial ordering of the truth values. In the case of an
autonomous agent a suitable ordering might be 1

2
≤ 0 and 1

2
≤ 1,

that is we would like to minimize incomplete and contradicting
information. For an interesting example of how circumscription
is used in a 3-valued setting, see [9].

We prove dichotomy theorems for the complexity of both the
model checking and inference problems for circumscription in
propositional 3-valued logics. Moreover we present for the first
time a dichotomy theorem for the complexity of the inference
problem for circumscription in propositional Boolean logic in the
general case where Q and Z need not be empty. In addition all
our dichotomy theorems comes with efficiently checkable crite-
ria to decide the complexity of a given subclass of the problem.
These results are obtained by the use of novel techniques from
universal algebra.

Although basic circumscription (where Q = Z = ∅) is a re-
stricted case of the problem we study, our dichotomies do not
imply dichotomies for basic circumscription. This is because our
hardness results does not in general carry over to the restricted
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case where Q = Z = ∅. Hence the existence of dichotomies for
the inference and model checking problems for basic circumscrip-
tion in 3-valued logic is still open.

Also note that we do not fix a particular ordering of the truth
values, i.e., we only demand that the ordering is a partial order.
In particular we say that a special case of the problem is tractable
if it is tractable for all possible partial orders of the truth values
and that a special case of the problem is hard if there exist a
partial order of the truth values such that it is hard. Since pre-
vious research has focused on circumscription in Boolean logic
where there are only one reasonable ordering of the truth values
(namely 0 ≤ 1), this decision has not been necessary before. But
even in the case where the ordering of the truth values is fixed,
all our results holds if the ordering is a total order. Moreover
we follow the approach in [14, 15] where the clauses of T and
T ′ are allowed to be arbitrary logical relations (sometimes called
generalized clauses).

The paper is organized as follows. In Section 2 we give
the necessary background on Constraint Satisfaction Problems
(CSPs) and the algebraic techniques we will use throughout this
paper. In Section 3 we prove our results on the complexity of
the model checking problem for circumscription in propositional
logic. In Section 4 we prove analogous results on the inference
problem, and finally we give some ideas for future research in
Section 5.

2 Preliminaries

In this section we introduce the notation and basic results on
CSPs and the algebraic techniques that we will use in the rest of
this paper.

Let D be a finite set. The set of all n-tuples of elements from
D is denoted by Dn. Any subset of Dn is called an n-ary relation
on D. The set of all finitary relations over D is denoted by RD.
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In this paper we will mainly deal with finitary relations over two
or three-element sets, denoted R2 and R3 respectively.

Definition 1 A constraint language over a finite set, D, is an
arbitrary set Γ ⊆ RD.

Given a constraint language Γ over a domainD = {d1, d2, . . . , dk},
we denote the constraint language Γ∪{{(d1)}, {(d2)}, . . . , {(dk)}}
by Γid. Constraint languages are the way in which we spec-
ify restrictions on our problems. For example in the case of
the inference problem for propositional circumscription over the
constraint language Γ, we demand that all the relations in the
knowledge base are present in Γ.

Definition 2 The constraint satisfaction problem over the con-
straint language Γ, denoted Csp(Γ), is defined to be the decision
problem with instance (V,D,C), where

• V is a set of variables,

• D = {d1, d2, . . . , dk} is a finite set of values (sometimes
called a domain), and

• C is a set of constraints {C1, . . . , Cq}, in which each con-
straint Ci is a pair (si, ̺i) with si a list of variables of length
mi, called the constraint scope, and ̺i an mi-ary relation
over the set D, belonging to Γ, called the constraint rela-
tion.

The question is whether there exists s solution to (V,D,C), that
is, a function from V to D such that, for each constraint in C,
the image of the constraint scope is a member of the constraint
relation.

Example 3 LetNAE be the following ternary relation on {0, 1}:
NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. It is easy to see that the
well-known NP-complete problem Not-All-Equal Sat can
be expressed as Csp({NAE}).
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Next we consider operations on the domain D. Any operation
onD can be extended in a standard way to an operation on tuples
over D, as follows.

Definition 4 Let f be a k-ary operation on D and let R be an n-
ary relation over D. For any collection of k tuples, t1, t2, . . . , tk ∈
R, the n-tuple f(t1, t2, . . . , tk) is defined as follows:

f(t1, t2, . . . , tk) =

(f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n], t2[n], . . . , tk[n]))

where tj[i] is the i:th component in tuple tj.

A technique that has shown to be useful in determining the
computational complexity of Csp(Γ) is that of investigating whe-
ther Γ is closed under certain families of operations [13].

Definition 5 Let ̺i ∈ Γ. If f is an operation such that for all
t1, t2, . . . , tk ∈ ̺i f(t1, t2, . . . , tk) ∈ ̺i, then ̺i is closed under f .
If all constraint relations in Γ are closed under f then Γ is closed
under f . An operation f such that Γ is closed under f is called a
polymorphism of Γ. The set of all polymorphisms of Γ is denoted
Pol(Γ). Given a set of operations F , the set of all relations that
is closed under all the operations in F is denoted Inv(F ).

Definition 6 For any set Γ ⊆ RD the set 〈Γ〉 consists of all
relations that can be expressed using relations from Γ ∪ {=D}
(=D is the equality relation on D), conjunction, and existential
quantification.

A relation belongs to 〈Γ〉 if and only if it can be represented
as the projection of the set of all solutions to some instance of
Csp(Γ) onto some subset of variables. Intuitively, constraints us-
ing relations from 〈Γ〉 are exactly those which can be simulated
by constraints using relations from Γ. The sets of relations of the
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form 〈Γ〉 are often referred to as relational clones. An alterna-
tive characterization of relational clones is given in the following
theorem.

Theorem 7 ([18]) For every set Γ ⊆ RD, 〈Γ〉 = Inv(Pol(Γ)).

The following set of operations will be essential in the classi-
fication of the complexity of subproblems specified by constraint
languages.

Definition 8 Let D be a finite set. An operation f on D is
called

• a constant operation if there is a c ∈ D such that f(d1, . . . ,
dn) = c for any d1, . . . , dn ∈ D;

• a near-unanimity operation if it is n-ary and satisfies the
identities f(d2, d1, . . . , d1) = f(d1, d2, d1, . . . , d1) = · · · =
f(d1, . . . , d1, d2) = d1 for any d1, d2 ∈ D;

• a Mal’tsev operation if it is ternary and f(d1, d1, d2) =
f(d2, d1, d1) = d2, for any d1, d2 ∈ D;

• a semilattice operation, if it is binary and satisfies the fol-
lowing three conditions: f(d1, f(d2, d3)) = f(f(d1, d2), d3),
f(d1, d2) = f(d2, d1), and f(d1, d1) = d1, for any d1, d2, d3 ∈
D;

• an essentially unary operation if f(d1, . . . , dn) = g(di) for
some non constant unary operation g, and any d1, . . . , dn ∈
D (if g is the identity operation, then f is often called a
projection).

The first dichotomy theorem for a broad class of decision
problems was Schaefer’s dichotomy theorem for the complexity
of the satisfiability problem in propositional Boolean logic.
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Theorem 9 ([19]) For any constraint language Γ ⊆ R2, Csp(Γ)
is tractable when one of the following conditions holds:

1. Every ̺ in Γ contains the tuple (0, 0, . . . , 0).

2. Every ̺ in Γ contains the tuple (1, 1, . . . , 1).

3. Every ̺ in Γ is definable by a CNF formula in which each
conjunct has at most one negated variable.

4. Every ̺ in Γ is definable by a CNF formula in which each
conjunct has at most one unnegated variable.

5. Every ̺ in Γ is definable by a CNF formula in which each
conjunct has at most two literals.

6. Every ̺ in Γ is definable by a system of linear equations
over the field with two elements.

In all other cases Csp(Γ) is NP-complete.

Schaefer’s result has later been given a much shorter and
simplified proof using the algebraic techniques that we will later
apply to the model checking and inference problems for circum-
scription in propositional logics. Schaefer’s result can be refor-
mulated in algebraic terms as follows.

Theorem 10 ([13]) Let Γ ⊆ R2 be a constraint language. Then,
Csp(Γ) is NP-complete if Pol(Γ) only contains essentially unary
operations, and tractable otherwise.

The following property of constraint languages is important
when determining the complexity of Csp(Γ). We only state the
property in the restricted case where the constraint languages
contain all unary singleton relations. The reason for this is that
these restricted constraint languages will later be of great impor-
tance in our study of the model checking and inference problems
in propositional circumscription. Note that this property is more
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naturally stated in terms of finite algebras [3]. Since we only use
this property indirectly and the actual definition of this property
is not essential to the understanding of the paper we choose to
give a less beautiful and intelligible definition in terms of rela-
tional clones (in order to avoid introducing the terminology of
finite algebras).

Definition 11 Let Γ ⊆ RD be a constraint language. Γid is said
to satisfy the G-Set property if there exist a subset A of D
and an equivalence relation θ on A such that θ ∈ Inv(Pol(Γid)),
and every polymorphism of Γid, when restricted to A and then
factorized by θ, is a projection on the factor set A/θ.

Bulatov have recently used algebraic techniques to prove a
dichotomy theorem for the complexity of the satisfiability prob-
lem in propositional 3-valued logic. We only state the dichotomy
theorem in the restricted case where the constraint languages
contain all unary singleton relations.

Theorem 12 ([1]) Let Γ ⊆ R3 be a constraint language. Then,
Csp(Γid) is NP-complete if Γid satisfies the G-Set property,
and tractable otherwise.

Moreover a dichotomy conjecture has been proposed for the
complexity of the satisfiability problem in propositional many-
valued logic. Again, we only state the conjecture in the restricted
case where the constraint languages contain all unary singleton
relations.

Conjecture 13 ([1]) Let Γ ⊆ RD be a constraint language.
Csp(Γid) is NP-complete if Γid satisfies the G-Set property,
and tractable otherwise.

Before we present the definitions of the constraint satisfac-
tion analogous of the model checking and inference problems in
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propositional circumscription we need to define formally the par-
tial order on functions/vectors that we use to define minimal
models.

Definition 14 Let ≤ denote a partial order on a domain D. Let
k be a positive integer and let α = (a1, . . . , ak), β = (b1, . . . , bk)
be two k-tuples in Dk, let P,Q,Z be a partition of {1, 2, . . . , k}
into disjoint (possibly empty) subsets. We write β ≤(P ;Z) α to
denote that bi ≤ ai for all i ∈ P and bj = aj for all j ∈ Q. Let
β <(P ;Z) α denote that β ≤(P ;Z) α and that there exist an i ∈ P
such that bi 6= ai.

Next we introduce the minimal constraint satisfaction prob-
lem, it should be clear that this problem is equivalent to the
model checking problem for circumscription in many-valued log-
ics.

Definition 15 The minimal constraint satisfaction problem over
the constraint language Γ, denoted Min-Csp(Γ), is defined to be
the decision problem with instance (V, P, Z,Q,D,≤, C, α), where
P,Z,Q is a partition of V into disjoint (possibly empty) subsets
and

• V is a set of variables,

• P represents the variables to minimize,

• Z represents the variables that vary,

• Q represents the variables that are fixed,

• D is a finite set of values (sometimes called a domain),

• ≤ is a partial order on D,

• C is a set of constraints {C1, . . . , Cq} in which each con-
straint Ci is a pair (si, ̺i) with si a list of variables of length
mi, called the constraint scope, and ̺i an mi-ary relation
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over the set D, belonging to Γ, called the constraint rela-
tion, and

• α is a function from V to D such that, for each constraint
in C the image of the constraint scope is a member of the
constraint relation.

The question is whether α is a minimal solution. That is, whether
there exists no function β from V to D such that, for each con-
straint in C, the image of the constraint scope is a member of
the constraint relation and β <(P ;Z) α.

Next we introduce the minimal constraint inference problem,
it should be clear that this problem is equivalent to the inference
problem for circumscription in many-valued logics.

Definition 16 The minimal constraint inference problem over
the constraint language Γ, denoted Min-Inf-Csp(Γ), is defined
to be the decision problem with instance (V, P, Z,Q,D,≤, C, ψ),
where V, P, Z,Q,D,≤, and C are defined as in Definition 15 and
ψ is a constraint such that the set of variables in ψ’s constraint
scope is a subset of V .

The question is whether each minimal solution α to (V, P, Z,
Q,D,≤, C) is a solution to ψ.

The size of a problem instance of Min-Inf-Csp(Γ) (Min-Csp(Γ))
is the length of the encoding of all tuples in all the constraints
in C.

We conclude this section by defining formally what we mean
when we say that a certain special case of a problem is in, or
complete for certain complexity class.

Definition 17 The problem Min-Csp(Γ) (Min-Inf-Csp(Γ)) is
in C (for a complexity class C) if for any finite Γ′ ⊆ Γ the problem
Min-Csp(Γ′) (Min-Inf-Csp(Γ′)) is in C. The problem Min-
Csp(Γ) (Min-Inf-Csp(Γ)) is C-complete (for a complexity class
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C) if Min-Csp(Γ′) (Min-Inf-Csp(Γ′)) is C-hard for a certain
finite Γ′ ⊆ Γ, and Min-Csp(Γ) (Min-Inf-Csp(Γ)) is in C.

3 Model Checking

The model checking problem for circumscription in propositional
Boolean logic was proved by Cadoli to be coNP-complete [5].
Some special cases of the problem was also shown to be tractable
in the same paper. The question of whether a dichotomy the-
orem could be proved for the computational complexity of the
problem was raised at that time, but was left open. This open
question was finally resolved by Kirousis and Kolaitis and given
an affirmative answer in [15].

We give a simplified proof of the dichotomy theorem for the
complexity of the model checking problem for circumscription in
propositional Boolean logic. We also prove interesting results on
the complexity of the corresponding problem in many-valued log-
ics. In particular we prove a dichotomy theorem for the complex-
ity of the model checking problem for circumscription in propo-
sitional 3-valued logics. In addition these dichotomy theorems
provides us with efficiently checkable criteria to decide whether
a given subclass of the problem is tractable or coNP-complete.
We also make explicit the strong connection between this prob-
lem and CSP. Note that it is easy to realize that the model
checking problem is in coNP.

We begin by stating the dichotomy theorem, due to Kirousis
and Kolaitis [15], for the complexity of the model checking prob-
lem for circumscription in propositional Boolean logic.

Theorem 18 ([15]) Let Γ ⊆ R2 be a constraint language. Min-
Csp(Γ) is tractable if at least one of the conditions 3,4,5,6 in
Theorem 9 are satisfied; otherwise it is coNP-complete.

We will later (in Theorem 25) give an alternative proof of the
preceding theorem using the algebraic approach.
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Example 19 The ternary Not-All-Equal relation on {0,1},
NAE, satisfies none of the conditions 3,4,5,6 in Theorem 9, hence
Min-Csp({NAE}) is coNP-complete.

The following theorem forms the basis of the algebraic ap-
proach to determine the complexity of the model checking prob-
lem for circumscription in propositional logic. It states that when
studying the complexity of Min-Csp(Γ) it is sufficient to con-
sider constraint languages that are relational clones. Hence the
class of constraint languages to be studied can be considerably
reduced.

Theorem 20 Min-Csp(Γ) is tractable ( coNP-complete) if and
only if Min-Csp(〈Γ〉) is tractable ( coNP-complete).

Proof: Since Γ ⊆ 〈Γ〉, if Min-Csp(Γ) is coNP-complete then
so is Min-Csp(〈Γ〉), and if Min-Csp(〈Γ〉) is tractable then so is
Min-Csp(Γ).

To prove the converse implications take a finite set Γ0 ⊆ 〈Γ〉
and an instance S = (V, P, Z,Q,D,≤, C, α) of Min-Csp(Γ0). We
transform S into an equivalent instance S ′ = (V ′, P ′, Z ′, Q′, D,
≤, C ′, α′) of Min-Csp(Γ1), where Γ1 is a finite subset of Γ.

For every constraint C = ((v1, . . . , vm), ̺) in S, ̺ can be
represented on the form ̺(v1, . . . , vm) =

∃vm+1
, . . . ,∃vn

̺1(v11, . . . , v1n1
) ∧ · · · ∧ ̺k(vk1, . . . , vknk

)

where ̺1, . . . , ̺k ∈ Γ ∪ {=D}, vm+1, . . . , vn are new variables not
previously present in S, and v11, . . . , v1n1

,v21, . . . , vknk
∈ {v1, . . . ,

vn}. Replace the constraint C with the constraints

((v11, . . . , v1n1
), ̺1), . . . , ((vk1, . . . , vknk

), ̺k).

Add vm+1, . . . , vn to V and Z. Extend α so that α is a solution to
all of the new constraints. We know that this is always possible
since α was a solution to ̺(v1, . . . , vm), and since ̺1 ∧ · · · ∧ ̺k ∈
〈Γ ∪ {=D}〉 such an extension can be found in polynomial time
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by checking each tuple in ̺1 ∧ · · · ∧ ̺k. If we repeat the same
reduction for every constraint in C it results in an equivalent
instance S ′′ = (V ′′, P, Z ′′, Q,D,≤, C ′′, α′′) of Min-Csp(Γ1∪{=D

}).
For each equality constraint ((vi, vj),=) in S ′′ we do the fol-

lowing:

• If both vi and vj are in P (Z ′′, Q) we remove vi from P
(Z ′′, Q) and V ′′, replace all occurrences of vi in C ′′ by vj
and modify α′′ so that it is not defined on vi.

• If vj is in Q and vi is in P we remove vi from P and V ′′,
replace all occurrences of vi in C ′′ by vj and modify α′′ so
that it is not defined on vi. The case where vj is in P and
vi is in Q is handled in the same way.

• The case that remains is when one of vi and vj is in Z ′′,
assume without loss of generality that vi is in Z ′′. We
remove vi from Z ′′ and V ′′, replace all occurrences of vi in
C ′′ by vj and modify α′′ so that it is not defined on vi.

Finally remove ((vi, vj),=) from C ′′. The resulting instance S ′ =
(V ′, P ′, Z ′, Q′, D,≤, C ′, α′) of Min-Csp(Γ1) is equivalent to S
and has been obtained in polynomial time. Hence if Min-Csp(Γ)
is tractable then so is Min-Csp(〈Γ〉), and if Min-Csp(〈Γ〉) is
coNP-complete then so is Min-Csp(Γ). 2

The following theorem states that all the information about
the complexity of Min-Csp(Γ) can be extracted from the set of
polymorphisms of Γ.

Theorem 21 Let Γ1 and Γ2 be sets of relations over a finite set,
such that Γ1 is finite. If Pol(Γ2) ⊆ Pol(Γ1) then Min-Csp(Γ1)
is polynomial-time reducible to Min-Csp(Γ2).

Proof: Pol(Γ2) ⊆ Pol(Γ1) implies that

Inv(Pol(Γ1)) ⊆ Inv(Pol(Γ2))
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or equivalently 〈Γ1〉 ⊆ 〈Γ2〉. Then by Theorem 20 it follows that
Min-Csp(Γ1) is polynomial-time reducible to Min-Csp(Γ2). 2

Hence what remains to be done is to determine the complexity
of Min-Csp(Γ) for all possible sets of polymorphisms of Γ. The
following theorem will be very useful in this effort.

Theorem 22 Min-Csp(Γ) is tractable ( coNP-complete) if and
only if Min-Csp(Γid) is tractable ( coNP-complete).

Proof: Since Γ ⊆ Γid, it follows that Min-Csp(Γ) is tractable if
Min-Csp(Γid) is tractable, and Min-Csp(Γid) is coNP-complete
if Min-Csp(Γ) is coNP-complete.

To prove the converse implications take a finite set Γ0 ⊆ Γid

and an instance S = (V, P, Z,Q,D,≤, C, α) of Min-Csp(Γ0). We
transform S into an equivalent instance S ′ = (V ′, P ′, Z ′, Q′, D,
≤, C ′, α′) of Min-Csp(Γ1), where Γ1 is a finite subset of Γ.

For all variables x occurring in a constraint in S of the type
((x), (di)) two cases emerge.

• In the case where x occurs in no other constraints, remove
x from V, P, Z and Q, let α be undefined on x, and remove
the constraint.

• In the case where x do occurs in another constraint, remove
x from P and Z, add x to Q and remove the constraint.

It is clear that α′ is a minimal solution in the resulting in-
stance S ′ = (V ′, P ′, Z ′, Q′, D,≤, C ′, α′) of Min-Csp(Γ1) if and
only if α is a minimal solution in the original instance S =
(V, P, Z,Q,D,≤, C, α) of Min-Csp(Γ0). 2

There is a strong relation between the complexity of Csp(Γ)
and Min-Csp(Γ). This relation is in part made explicit in the
following theorem that will be useful in proving tractability re-
sults for Min-Csp(Γ).

Theorem 23 If Csp(Γid) is tractable, then Min-Csp(Γ) is tract-
able.
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Proof: We give a polynomial time Turing reduction from Min-
Csp(Γ) to Csp(Γid). Let min(D) denote the set of minimal
elements in D (as specified by ≤). Given an instance S =
(V, P, Z,Q,D,≤, C, α) of Min-Csp(Γ), let P+ denote the set
{p ∈ P |α(p) is not in min(D)}, and S ′ = (V,D,C ′) denote
the instance of Csp(Γid) where

C ′ = C ∪
⋃

p∈P\P+

{(p, α(p))} ∪
⋃

q∈Q

{(q, α(q))}.

Then α is a minimal solution for C if and only if for each s ∈
P+ and for each d ∈ D such that d < α(s) the instance S ′′ =
(V,D,C ′′) of Csp(Γid) where C ′′ = C ′∪{(s, (d))} is unsatisfiable.

We begin by proving the if part. Suppose that α is a minimal
solution of C and that there exists an s ∈ P+ and a d ∈ D such
that d < α(s) and C ′′ is satisfiable. Let β be a solution of C ′′.
Of course β is also a solution of C, and β <(P ;Z) α contradicting
that α is a minimal solution of C.

Now to the only if part. Suppose that for each s ∈ P+ and
each d ∈ D such that d < α(s), C ′′ is unsatisfiable, and suppose
that a solution β of C exists such that β <(P ;Z) α. Since β <(P ;Z)

α, there exists at least one t ∈ P , such that β(t) < α(t). Since
t ∈ P+, it follows that there exists one s ∈ P+ and a d ∈ D such
that d < α(s) and C ′′ is satisfiable, contradicting the assumption
above. 2

All of our coNP-completeness results for the model checking
problem can be deduced from the following theorem.

Theorem 24 Let Γ ⊆ RD be a constraint language. If Γid sat-
isfies the G-Set property then Min-Csp(Γ) is coNP-complete.

Proof: If Γid satisfies the G-Set property, then it follows from
the proof of Proposition 7.9 in [4] that there is a relation ̺ ∈ 〈Γid〉
such that ̺ = f−1(NAE), where NAE is the ternary Not-All-
Equal relation on {0,1}, and f is a function from some subset
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A ⊆ D onto {0, 1}. Note that by ̺ = f−1(NAE) we mean that
̺ is the following relation {(a1, a2, a3)|(c1, c2, c3) ∈ NAE, and
ai ∈ f−1(ci)}. The intuition behind ̺ is that it is similar to
NAE, but we can view more than one element as 0 (1).

We shall prove that Min-Csp({̺}) is coNP-complete by re-
duction from the coNP-complete problem Min-Csp({NAE}).
Let ≤ be a total order on D, A0 = f−1(0), and A1 = f−1(1).
Furthermore let a0 be the least element of A0 (w.r.t. ≤), a1 the
least element of A1, and assume without loss of generality that
a0 ≤ a1. Then map every instance S of Min-Csp({NAE}) to
an instance S ′ of Min-Csp({̺}) which have the same structure,
but NAE is replaced by ̺ throughout, and in the given solution
α, every 0 is replaced by a0, and every 1 is replaced by a1. It
should be clear that by the choice of a0, a1, and the structure of
̺, S is equivalent to S ′. Since ̺ ∈ 〈Γid〉 it follows from Theorem
20 and Theorem 22 that Min-Csp(Γ) is coNP-complete. 2

Next we present an alternative proof of the dichotomy the-
orem for the complexity of the model checking problem for cir-
cumscription in propositional Boolean logic (Theorem 18).

Theorem 25 Let Γ ⊆ R2 be a constraint language. Min-Csp(Γ)
is coNP-complete if Pol(Γid) only contains essentially unary op-
erations, and tractable otherwise.

Proof: If Pol(Γid) contains an operation that is not essentially
unary then we can conclude from Theorem 10 and Theorem 23
that Min-Csp(Γid) is tractable. Hence by Theorem 22 Min-
Csp(Γ) is tractable when Pol(Γid) contains an operation that is
not essentially unary. What remains to be proved is that Min-
Csp(Γ) is coNP-complete when Pol(Γid) only contains essen-
tially unary operations. First note that if Pol(Γid) only con-
tains essentially unary operations then Pol(Γid) only contains
essentially unary operations f whose corresponding unary oper-
ation g is the identity operation. This is because if g(di) 6= di,
then the relation {(di)} would not be closed under f . Hence
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Inv(Pol(Γid)) = R2, the set of all finitary relations over {d1, d2}.
Thus we conclude by Cadoli’s coNP-completeness result for Min-
Csp(R2) [5] and Theorem 20 that Min-Csp(Γid) is coNP-comp-
lete and by Theorem 22, Min-Csp(Γ) is coNP-complete. 2

Note that the techniques used in [15] to prove the dichotomy
theorem for the complexity of the model checking problem for
circumscription in propositional Boolean logic does not seem
to be applicable in the case of many-valued propositional log-
ics. On the contrary the algebraic techniques used in this pa-
per are capable of proving interesting results on the complexity
of the model checking problem for circumscription in proposi-
tional many-valued logics. In particular we are able to present
a dichotomy theorem for the complexity of the model checking
problem for circumscription in propositional 3-valued logics.

Theorem 26 Let Γ ⊆ R3 be a constraint language. Min-Csp(Γ)
is coNP-complete if Γid satisfies the G-Set property, and tract-
able otherwise.

Proof: If Γid satisfies the G-Set property then by Theorem
24 we know that Min-Csp(Γ) is coNP-complete. Otherwise
we know by Theorem 12 that Csp(Γid) is tractable and thus by
Theorem 23 we get that Min-Csp(Γ) is tractable. 2

Note that the borderline between tractability and coNP-
completeness in the preceding theorem coincides with the bor-
derline between tractability and NP-completeness for Csp(Γ) in
Theorem 12. Hence when Γ ⊆ R3 we can use the same polyno-
mial time algorithm as presented in [1] to check whether Min-
Csp(Γ) is coNP-complete or tractable.

By using Theorem 23 and known results on the complexity of
Csp(Γ) we can identify several tractable cases of the model check-
ing problem for circumscription in propositional many-valued
logics.

Theorem 27 If Pol(Γ) contains a near-unanimity operation, a
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semilattice operation or a Mal’tsev operation then Min-Csp(Γ)
is tractable.

Proof: It is proved in [2, 13] that Csp(Γ) is tractable if Pol(Γ)
contains a near-unanimity operation, a semilattice operation or a
Mal’tsev operation. Note that if Pol(Γ) contains a near-unanimity
operation, a semilattice operation or a Mal’tsev operation, then
so does Pol(Γid). Hence the result follows from Theorem 23. 2

We conclude this section by presenting a conjecture on the
complexity of the model checking problem for circumscription in
propositional many-valued logics.

Conjecture 28 Let Γ ⊆ RD be a constraint language. Min-
Csp(Γ) is coNP-complete if Γid satisfies the G-Set property,
and tractable otherwise.

Note that the coNP-completeness part of the conjecture follows
from Theorem 24. Also note that the tractability part of the
conjecture would follow if the conjecture about the structure of
the dichotomy for Csp(Γ) (Conjecture 13) was proved to be true.

4 Inference

The inference problem for circumscription in propositional Bool-
ean logic was proved by Eiter and Gottlob to be ΠP

2
-complete

[11]. Some special cases of the problem was already at that time
known to have complexity lower than the general case, i.e., spe-
cial cases that are in coNP [7]. Kirousis and Kolaitis managed
to prove a dichotomy theorem for the complexity of the inference
problem in basic circumscription (Q = Z = ∅) for propositional
Boolean logic [14]. More specifically they prove that every special
case of the problem is either in coNP or PiP

2
-complete.

We prove a dichotomy theorem for the complexity of the infer-
ence problem for circumscription in propositional Boolean logic.
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We also prove interesting results on the complexity of the corre-
sponding problem in many-valued logics. In particular we prove
a dichotomy theorem for the complexity of the inference problem
for circumscription in propositional 3-valued logics. In addition
these dichotomy theorems provides us with efficiently checkable
criteria to decide whether a given subclass of the problem is in
coNP or ΠP

2
-complete. Note that it is easy to realize that the

inference problem is in ΠP

2
.

The following theorem forms the basis of the algebraic ap-
proach to determine the complexity of the inference problem for
circumscription in propositional logic. The proof is very similar
to the proof of Theorem 20.

Theorem 29 Min-Inf-Csp(Γ) is in coNP (ΠP

2
-complete) if

and only if Min-Inf-Csp(〈Γ〉) is in coNP (ΠP

2
-complete).

Proof: Since Γ ⊆ 〈Γ〉, if Min-Inf-Csp(Γ) is ΠP

2
-complete then

so is Min-Inf-Csp(〈Γ〉), and if Min-Inf-Csp(〈Γ〉) is tractable
then so is Min-Inf-Csp(Γ).

To prove the converse implications take a finite set Γ0 ⊆
〈Γ〉 and an instance S = (V, P, Z,Q,D,≤, C, ψ) of Min-Inf-
Csp(Γ0). We transform S into an equivalent instance S ′ =
(V ′, P ′, Z ′, Q′, D,≤, C ′, ψ′) of Min-Inf-Csp(Γ1), where Γ1 is a
finite subset of Γ.

For every constraint C = ((v1, . . . , vm), ̺) in S, ̺ can be
represented on the form ̺(v1, . . . , vm) =

∃vm+1
, . . . ,∃vn

̺1(v11, . . . , v1n1
) ∧ · · · ∧ ̺k(vk1, . . . , vknk

)

where ̺1, . . . , ̺k ∈ Γ ∪ {=D}, vm+1, . . . , vn are new variables not
previously present in S, and v11, . . . , v1n1

,v21, . . . , vknk
∈ {v1, . . . ,

vn}. Replace the constraint C with the constraints

((v11, . . . , v1n1
), ̺1), . . . , ((vk1, . . . , vknk

), ̺k).

Add vm+1, . . . , vn to V and Z. If we repeat the same reduction
for every constraint in C it results in an equivalent instance S ′′ =
(V ′′, P, Z ′′, Q,D,≤, C ′′, ψ) of Min-Inf-Csp(Γ1 ∪ {=D}).
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For each equality constraint ((vi, vj),=) in S ′′ we do the fol-
lowing:

• If both vi and vj are in P (Z ′′, Q) we remove vi from P
(Z ′′, Q) and V ′′, replace all occurrences of vi in C ′′ and ψ
by vj.

• If vj is in Q and vi is in P we remove vi from P and V ′′,
replace all occurrences of vi in C ′′ and ψ by vj. The case
where vj is in P and vi is in Q is handled in the same way.

• The case that remains is when one of vi and vj is in Z ′′,
assume without loss of generality that vi is in Z ′′. We
remove vi from Z ′′ and V ′′, replace all occurrences of vi in
C ′′ and ψ by vj.

Finally remove ((vi, vj),=) from C ′′.
The resulting instance S ′ = (V ′, P ′, Z ′, Q′, D,≤, C ′, ψ′) of

Min-Inf-Csp(Γ1) is equivalent to S and has been obtained in
polynomial time. Hence if Min-Inf-Csp(Γ) is tractable then so
is Min-Inf-Csp(〈Γ〉), and if Min-Inf-Csp(〈Γ〉) is ΠP

2
-complete

then so is Min-Inf-Csp(Γ). 2

The following theorem states that all the information about
the complexity of Min-Inf-Csp(Γ) can be extracted from the
set of polymorphisms of Γ. The proof is essentially the same as
the proof of Theorem 21.

Theorem 30 Let Γ1 and Γ2 be sets of relations over a finite
set, such that Γ1 is finite. If Pol(Γ2) ⊆ Pol(Γ1) then Min-Inf-
Csp(Γ1) is polynomial-time reducible to Min-Inf-Csp(Γ2).

Hence what remains to be done is to determine the complex-
ity of Min-Inf-Csp(Γ) for all possible sets of polymorphisms of
Γ. The following theorem will be very useful in this effort. The
proof is substantially different from the proof of the correspond-
ing result (Theorem 22) for Min-Csp(Γ). Here we are forced
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to make changes to the constraint to be inferred when reducing
Min-Inf-Csp(Γid) to Min-Inf-Csp(Γ).

Theorem 31 Min-Inf-Csp(Γ) is in coNP (ΠP

2
-complete) if

and only if Min-Inf-Csp(Γid) is in coNP (ΠP

2
-complete).

Proof: Since Γ ⊆ Γid, it follows that Min-Inf-Csp(Γ) is in
coNP if Min-Inf-Csp(Γid) is in coNP, and Min-Inf-Csp(Γid)
is ΠP

2
-complete if Min-Inf-Csp(Γ) is ΠP

2
-complete.

To prove the converse implications take a finite set Γ0 ⊆
Γid and an instance S = (V, P, Z,Q,D,≤, C, ψ) of Min-Inf-
Csp(Γ0). We transform S into an equivalent instance S ′ =
(V ′, P ′, Z ′, Q′, D,≤, C ′, ψ′) of Min-Csp(Γ1), where Γ1 is a finite
subset of Γ.

For all variables x, y occurring in a constraint in S of the
type ((x), (di)) and ((y), (di)), replace the constraint ((y), (di))
by ((x, y),=). By the proof of Theorem 29 we know that Min-
Inf-Csp(Γ ∪ {=D}) is polynomial time reducible to Min-Inf-
Csp(Γ). Hence only |D| constraints of the type ((x), (di)) need
to be considered. For all variables x occurring in a constraint in
S of the type ((x), (di)) three cases emerge.

• In the case where x occurs neither in ψ nor in any other
constraints, remove x from V, P, Z and Q, and remove the
constraint.

• In the case where x occurs in another constraint but not
in ψ, remove x from P and Z, add x to Q and remove
the constraint. Update ψ as follows. Append x to the
constraint scope of ψ. Let the constraint relation consist of
the following tuples {{D \di}×D

n}∪{di×ϕψ} where n is
the length of ψ’s constraint scope and ϕψ is ψ’s constraint
relation.

• In the case where x occurs in another constraint and in
ψ, remove x from P and Z, add x to Q and remove the
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constraint. Update ψ as follows. Let the constraint relation
consist of the following tuples {{Dj×{D \di}×D

k}∪ϕψ}
where j + k + 1 is the length of ψ’s constraint scope, ϕψ is
ψ’s constraint relation, and j+ 1 is the position of x in ψ’s
constraint scope.

More informally the idea behind the reduction is as follows. If
((x), (di)) is a constraint in C, we remove it and modify ψ to
make sure that every minimal model α of C \ {((x), (di))} such
that α(x) 6= di, is a model of ψ, and in the case where α(x) = di
we make sure that α is a model of the modified ψ if and only if
α was a model of the original ψ. It should be clear that S and
S ′ are equivalent. 2

There is a strong connection between the model checking and
inference problem for circumscription in propositional logics.

Theorem 32 ([7]) If Min-Csp(Γ) is tractable then Min-Inf-
Csp(Γ) is in coNP.

Note that the argument in [7] only deals with circumscription
in propositional Boolean logic, but it is obvious that the same
argument holds also in the case of propositional many-valued
logics.

All of our ΠP

2
-completeness results for the inference problem

can be deduced from the following theorem. The proof is similar
to the proof of Theorem 24.

Theorem 33 Let Γ ⊆ RD be a constraint language. If Γid satis-
fies the G-Set property then Min-Inf-Csp(Γ) is ΠP

2
-complete.

Proof: If Γid satisfies the G-Set property, then it follows from
the proof of Proposition 7.9 in [4] that there is a relation ̺ ∈ 〈Γid〉
such that ̺ = f−1(NAE), where NAE is the ternary Not-All-
Equal relation on {0,1} in Example 3, and f is a function from
some subset A ⊆ D onto {0, 1}. Note that by ̺ = f−1(NAE)
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we mean that ̺ is the following relation {(a1, a2, a3)|(c1, c2, c3) ∈
NAE, and ai ∈ f−1(ci)}. The intuition behind ̺ is that it is
similar to NAE, but we can view more than one element as 0
(1).

We shall prove that Min-Inf-Csp({̺}) is ΠP

2
-complete by re-

duction from the ΠP

2
-complete problem Min-Inf-Csp({NAE}).

Let ≤ be a total order on D, A0 = f−1(0), and A1 = f−1(1).
Furthermore let a0 be the least element of A0 (w.r.t. ≤), a1 the
least element of A1, and assume without loss of generality that
a0 ≤ a1. Then map every instance S of Min-Inf-Csp({NAE})
to an instance S ′ of Min-Inf-Csp({̺}) which have the same
structure, but NAE is replaced by ̺ throughout, and in the con-
straint to be inferred ψ, every 0 is replaced by a0, and every 1 is
replaced by a1. It should be clear that by the choice of a0, a1,
and the structure of ̺, S is equivalent to S ′. Since ̺ ∈ 〈Γid〉 it
follows from Theorem 29 and Theorem 31 that Min-Inf-Csp(Γ)
is ΠP

2
-complete. 2

Next we present a proof of the dichotomy theorem for the
complexity of the inference problem for circumscription in propo-
sitional Boolean logic. Note that previously no dichotomy the-
orem was known for this problem. The proof is very similar to
the proof of Theorem 25.

Theorem 34 Let Γ ⊆ R2 be a constraint language. Min-Inf-
Csp(Γ) is ΠP

2
-complete if Pol(Γid) only contains essentially un-

ary operations, and it is in coNP otherwise.

Proof: If Pol(Γid) contains an operation that is not essen-
tially unary, then we know from Theorem 25 that Min-Csp(Γ)
is tractable. Hence by Theorem 32 we conclude that Min-Inf-
Csp(Γ) is in coNP when Pol(Γid) contains an operation that is
not essentially unary.

What remains to be proved is that Min-Inf-Csp(Γ) is ΠP

2
-

complete when Pol(Γid) only contains essentially unary opera-
tions. First note that if Pol(Γid) only contains essentially unary
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operations then Pol(Γid) only contains essentially unary opera-
tions f whose corresponding unary operation g is the identity
operation. This is because if g(di) 6= di, then the relation {(di)}
would not be closed under f . Hence Inv(Pol(Γid)) = R2, the set
of all finitary relations over {d1, d2}. Thus we conclude by Eiter
and Gottlob’s ΠP

2
-completeness result for Min-Inf-Csp(R2) [11]

and Theorem 29 that Min-Inf-Csp(Γid) is ΠP

2
-complete and

hence by Theorem 31, Min-Inf-Csp(Γ) is ΠP

2
-complete. 2

Now we are ready to present the dichotomy theorem for the
complexity of the inference problem for circumscription in propo-
sitional 3-valued logics.

Theorem 35 Let Γ ⊆ R3 be a constraint language. Min-Inf-
Csp(Γ) is ΠP

2
-complete if Γid satisfies the G-Set property, and

in coNP otherwise.

Proof: If Γid satisfies the G-Set property then the ΠP

2
-comp-

leteness part follows from Theorem 33. Otherwise we know from
Theorem 26 that Min-Csp(Γ) is tractable. Hence by Theorem
32 we conclude that Min-Inf-Csp(Γ) is in coNP. 2

Note that the borderline between subproblems in coNP and
ΠP

2
-complete subproblems in the preceding theorem coincides

with the borderline between tractability and NP-completeness
for Csp(Γ) in Theorem 12. Hence when Γ ⊆ R3 we can use
the same polynomial time algorithm as presented in [1] to check
whether Min-Inf-Csp(Γ) is in coNP or ΠP

2
-complete.

We can identify several cases of the inference problem for
circumscription in propositional many-valued logics having lower
complexity than the general case.

Theorem 36 If Pol(Γ) contains a near-unanimity operation,
a semilattice operation or a Mal’tsev operation then Min-Inf-
Csp(Γ) is in coNP.
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Proof: It is proved in Theorem 27 that Min-Csp(Γ) is tractable
if Pol(Γ) contains a near-unanimity operation, a semilattice op-
eration or a Mal’tsev operation. Thus it follows from Theorem
32 that Min-Inf-Csp(Γ) is in coNP. 2

We conclude this section by presenting a conjecture on the
complexity of the inference problem for circumscription in propo-
sitional many-valued logics.

Conjecture 37 Let Γ ⊆ RD be a constraint language. Min-
Inf-Csp(Γ) is ΠP

2
-complete if Γid satisfies the G-Set property,

and in coNP otherwise.

Note that the ΠP

2
-completeness part of the conjecture follows

from Theorem 33. Also note that the tractability part of the
conjecture would follow if the conjecture about the structure of
the dichotomy for Csp(Γ) (Conjecture 13) was proved to be true.

5 Future Research

The obvious continuation of this work would be to extend the
results from 3-valued logics to n-valued logics, but in light of
the close relationship here uncovered between these problems
and CSP, this will probably have to await the resolution of the
dichotomy conjecture for CSP. Another interesting open problem
is the existence of dichotomies for basic circumscription (where
Q = Z = ∅) in 3-valued logics. Moreover it is certainly the
case that there exist constraint languages (knowledge bases) Γ ⊆
R2 such that Min-Inf-Csp(Γ) is tractable. Does there in fact
exist a trichotomy (P, coNP-complete, ΠP

2
-complete) for the

complexity of Min-Inf-Csp(Γ)?
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A Trichotomy in the
Complexity of
Propositional
Circumscription

Gustav Nordh

Abstract

Circumscription is one of the most important and well-studied for-

malisms in the realm of nonmonotonic reasoning. The inference

problem for propositional circumscription has been extensively stud-

ied from the viewpoint of computational complexity. We prove that

there exists a trichotomy for the complexity of the inference prob-

lem in propositional variable circumscription. More specifically we

prove that every restricted case of the problem is either ΠP

2
-complete,

coNP-complete, or in P.
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1 Introduction

Circumscription, introduced by McCarthy [13], is perhaps the
most well developed and extensively studied formalism in non-
monotonic reasoning. The key intuition behind circumscription
is that by focusing on minimal models of formulas we achieve
some degree of common sense, because minimal models have as
few ”exceptions” as possible.

Propositional circumscription is the basic case of circumscrip-
tion in which satisfying truth assignments of propositional formu-
las are partially ordered according to the coordinatewise partial
order ≤ on Boolean vectors, which extends the order 0 ≤ 1 on
{0, 1}. In propositional variable circumscription only a certain
subset of the variables in formulas are subject to minimization,
others must maintain a fixed value or are subject to no restric-
tions at all. Given a propositional formula T and a partition of
the variables in T into three (possibly empty) disjoint subsets
(P ;Z;Q) where P is the set of variables we want to minimize, Z
is the set of variables allowed to vary and Q is the set of variables
that must maintain a fixed value, we define the partial order on
satisfying models as follows. Let α, β be two models of T , then
α ≤(P ;Z) β if α and β assign the same value to the variables in Q
and for every variable p in P , α(p) ≤ β(p) (moreover if there ex-
ists a variable p in P such that α(p) 6= β(p), we write α <(P ;Z) β).
A minimal model of a formula T is a satisfying model α such that
there exists no satisfying model β where β <(P ;Z) α.

We will from now on call the restricted form of propositional
circumscription where all variables are subject to minimization
(that is Q = Z = ∅) for basic circumscription, and the more
general propositional variable circumscription for propositional
circumscription.

Every logical formalism gives rise to the fundamental problem
of inference. In the case of propositional circumscription the
inference problem can be formulated as follows.
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• Inference: Given two propositional Boolean formulas T
and T ′ and a partition of the variables in T into three
disjoint (possibly empty) subsets (P ;Z;Q), is T ′ true in
every minimal model of T .

The formulas T and T ′ are assumed to be given in conjunctive
normal form. It is easy to realize that the inference problem
is equivalent (under polynomial-time conjunctive reductions) to
the case where T ′ is a single clause, since T ′ can be inferred from
T under propositional circumscription if and only if each clause
of T ′ can be so inferred. Moreover we follow the approach in
[10, 11, 14] where the clauses of T are allowed to be arbitrary
logical relations (sometimes called generalized clauses). This ap-
proach was first used by Schaefer to classify the complexity of
the satisfiability problem in propositional logic and is sometimes
referred to as Schaefer’s framework [18].

Circumscription in propositional logic is very well-studied
from the computational complexity perspective [2, 4, 7, 8, 10,
11, 14]. The inference problem for propositional circumscription
has been proved to be ΠP

2
-complete [8]. This result displays a

dramatic increase in the computational complexity compared to
the case of ordinary propositional logic, where the inference prob-
lem is coNP-complete [3]. This negative result raise the prob-
lem of identifying restricted cases in which the inference problem
for propositional circumscription have computational complexity
lower than the general case.

The most natural way to study such restrictions is to study
restrictions on the formulas representing knowledge bases, de-
noted T in above. This is also the approach followed in most of
the previous research in the area. Hence in the case of restric-
tions of the inference problem, we only restrict the formula T
while T ′ are subject to no restrictions. The ultimate goal of this
line of research is to determine the complexity of every restricted
special case of the problem. The first result of this type was
proved by Schaefer [18], who succeeded in obtaining a complete
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classification of the satisfiability problem in propositional logic.
He proved that every special case of the satisfiability problem in
propositional logic either is tractable or NP-complete (note that
this implies that the inference problem in propositional logic is
either tractable or coNP-complete). Recall the result due to
Ladner [12] that if P 6= NP, then there exist decision problems
in NP that are neither tractable nor NP-complete. Hence the
existence of dichotomy theorems like Schaefer’s cannot be taken
for granted.

Some partial results are known for the complexity of the in-
ference problem. More specifically, both in the general case and
in the case where Q = Z = ∅, it has been proved that every spe-
cial case of the problem is either ΠP

2
-complete or lies in coNP

[10, 14].
Until now we have lacked a clear picture of the complexity

of the inference problem in propositional circumscription, i.e.,
no complete classification of special cases of the problem with a
complexity in coNP as coNP-complete or in P is known. Some
cases are known to be coNP-complete, but to the best of our
knowledge only one case of the inference problem (where Q and
Z need not be empty) is known to be in P [2].

We prove that there exists a trichotomy theorem for the com-
plexity of the inference problem, i.e., for every special case of
the problem it is either in P, coNP-complete, or ΠP

2
-complete.

Moreover we discover two new tractable cases. These results are
obtained by the use of techniques from universal algebra. These
techniques were first applied to the propositional circumscription
problem in [14] where dichotomies for the model checking and
inference problem for propositional circumscription in 3-valued
logic were proved.

Although basic circumscription (where Q = Z = ∅) is a re-
stricted case of the problem we study, our trichotomy does not
imply a trichotomy for basic circumscription. This is because our
hardness results do not in general carry over to the restricted case
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where Q = Z = ∅. Hence the existence of a trichotomy for the
inference problem in basic propositional circumscription is still
open.

The paper is organized as follows. In Section 2 we give
the necessary background on Constraint Satisfaction Problems
(CSPs) and the algebraic techniques that we will use throughout
this paper. In Section 3 we prove our trichotomy theorem for the
complexity of circumscription in propositional logic and finally
in Section 4 we give some conclusions.

2 Preliminaries

In this section we introduce the notation and basic results on
CSPs and the algebraic techniques that we will use in the rest of
this paper.

2.1 Constraint Satisfaction Problems

The set of all n-tuples of elements from {0, 1} is denoted by
{0, 1}n. Any subset of {0, 1}n is called an n-ary relation on {0, 1}.
The set of all finitary relations over {0, 1} is denoted by BR.

Definition 1 A constraint language over {0, 1} is an arbitrary
set Γ ⊆ BR.

Constraint languages are the way in which we specify restric-
tions on our problems. For example in the case of the inference
problem for propositional circumscription over the constraint lan-
guage Γ, we demand that all the relations in the knowledge base
are present in Γ.

Definition 2 The Boolean constraint satisfaction problem (or
the generalized satisfiability problem as Schaefer called it) over
the constraint language Γ ⊆ BR, denoted Csp(Γ), is defined to
be the decision problem with instance (V,C), where
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• V is a set of variables, and

• C is a set of constraints {C1, . . . , Cq}, in which each con-
straint Ci is a pair (si, ̺i) with si a list of variables of length
mi, called the constraint scope, and ̺i an mi-ary relation
over the set {0, 1}, belonging to Γ, called the constraint
relation.

The question is whether there exists a solution to (V,C), that is,
a function from V to {0, 1} such that, for each constraint in C,
the image of the constraint scope is a member of the constraint
relation.

Example 3 LetNAE be the following ternary relation on {0, 1}:

NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

It is easy to see that the well-known NP-complete problem Not-
All-Equal 3-Sat can be expressed as Csp({NAE}).

Next we consider operations on {0, 1}. Any operation on
{0, 1} can be extended in a standard way to an operation on
tuples over {0, 1}, as follows.

Definition 4 Let f be a k-ary operation on {0, 1} and let R
be an n-ary relation over {0, 1}. For any collection of k tuples,
t1, t2, . . . , tk ∈ R, the n-tuple f(t1, t2, . . . , tk) is defined as follows:

f(t1, t2, . . . , tk) =

(f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n], t2[n], . . . , tk[n])),

where tj[i] is the i-th component in tuple tj.

A technique that has shown to be useful in determining the
computational complexity of Csp(Γ) is that of investigating whe-
ther Γ is closed under certain families of operations [9].
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Definition 5 Let ̺i ∈ Γ. If f is an operation such that for all
t1, t2, . . . , tk ∈ ̺i f(t1, t2, . . . , tk) ∈ ̺i, then ̺i is closed under f .
If all constraint relations in Γ are closed under f then Γ is closed
under f . An operation f such that Γ is closed under f is called a
polymorphism of Γ. The set of all polymorphisms of Γ is denoted
Pol(Γ). Given a set of operations F , the set of all relations that
is closed under all the operations in F is denoted Inv(F ).

Definition 6 For any set Γ ⊆ BR the set 〈Γ〉 consists of all
relations that can be expressed using relations from Γ ∪ {=} (=
is the equality relation on {0, 1}), conjunction, and existential
quantification.

Intuitively, constraints using relations from 〈Γ〉 are exactly those
which can be simulated by constraints using relations from Γ.
The sets of relations of the form 〈Γ〉 are referred to as relational
clones, or co-clones. An alternative characterization of relational
clones is given in the following theorem.

Theorem 7 ([17]) For every set Γ ⊆ BR, 〈Γ〉 = Inv(Pol(Γ)).

The first dichotomy theorem for a broad class of decision
problems was Schaefer’s dichotomy theorem for the complexity
of the satisfiability problem in propositional logic [18]. Schaefer’s
result has later been given a much shorter and simplified proof
using the algebraic techniques that we will later apply to the
inference problem for propositional circumscription. Schaefer’s
result can be formulated in algebraic terms as follows.

Theorem 8 ([9]) Let Γ ⊆ BR be a constraint language. Csp(Γ)
is NP-complete if Pol(Γ) only contains essentially unary oper-
ations, and tractable otherwise. Note that an operation f is es-
sentially unary if and only if f(d1, . . . , dn) = g(di) for some non
constant unary operation g, and any d1, . . . , dn ∈ {0, 1}.
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As we will see later, constraint languages containing the re-
lations {(0)} and {(1)} will be of particular importance to us.

Definition 9 Given a constraint language Γ, the idempotent
constraint language corresponding to Γ is Γ∪{{(0)}, {(1)}} which
is denoted by Γid.

2.2 Propositional Circumscription

In this section we make some formal definitions and recall some
of the results from [14]. Note that the focus of [14] is on propo-
sitional circumscription in many-valued logics, and as a conse-
quence the clause to be inferred is allowed to be a general con-
straint. Since we only consider circumscription in Boolean logic
in this paper, this generalization is no longer necessary and in
order to comply with the definitions of the problem in [2, 10] we
require that the clause to be inferred is an ordinary clause. The
results from [14] still holds.

First we introduce the minimal constraint inference problem.
It should be clear that this problem is equivalent to the inference
problem for propositional circumscription.

Definition 10 The minimal constraint inference problem over
the constraint language Γ ⊆ BR, denoted Min-Inf-Csp(Γ), is
defined to be the decision problem with instance (V, P, Z,Q,C, ψ),
where (P ;Z;Q) is a partition of V into disjoint (possibly empty)
subsets and

• V is a set of variables,

• P represents the variables to minimize,

• Z represents the variables that vary,

• Q represents the variables that are fixed,
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• C is a set of constraints {C1, . . . , Cq} in which each con-
straint Ci is a pair (si, ̺i) with si a list of variables of length
mi, called the constraint scope, and ̺i an mi-ary relation
over the set {0, 1}, belonging to Γ, called the constraint
relation, and

• ψ is a clause such that the set of variables in ψ is a subset
of V .

The question is whether each minimal model α of (V, P, Z,Q,
C) is also a model of ψ.

The size of a problem instance of Min-Inf-Csp(Γ) is the length
of the encoding of all tuples in all the constraints in C.

We define formally what we mean when we say that a certain
special case of a problem is tractable or complete for certain
complexity class.

Definition 11 The problem Min-Inf-Csp(Γ) is called tractable
if for any finite Γ′ ⊆ Γ the problem Min-Inf-Csp(Γ′) is solvable
in polynomial time. The problem Min-Inf-Csp(Γ) is called C-
complete (for a complexity class C) if Min-Inf-Csp(Γ′) is C-hard
for a certain finite Γ′ ⊆ Γ, and Min-Inf-Csp(Γ) ∈ C.

The following theorem forms the basis of the algebraic ap-
proach to determine the complexity of the inference problem for
circumscription in propositional logic. It states that when in-
vestigating the complexity of Min-Inf-Csp(Γ) it is sufficient to
consider constraint languages that are relational clones.

Theorem 12 ([14]) Min-Inf-Csp(Γ) is in P ( coNP-compl-
ete, ΠP

2
-complete) if and only if Min-Inf-Csp(〈Γ〉) is in P

( coNP-complete, ΠP

2
-complete).

The following theorem reduces the set of constraint languages
that need to be considered even further.
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Theorem 13 ([14]) Min-Inf-Csp(Γ) is in P ( coNP-compl-
ete, ΠP

2
-complete) if and only if Min-Inf-Csp(Γid) is in P ( co-

NP-complete, ΠP

2
-complete).

We conclude this section by stating the dichotomy for the
complexity of the inference problem in propositional circumscrip-
tion that was proved in [14].

Theorem 14 ([14]) Let Γ ⊆ BR be a constraint language. Min-
Inf-Csp(Γ) is ΠP

2
-complete if Pol(Γid) only contains essentially

unary operations, and it is in coNP otherwise.

3 Trichotomy Theorem for the Infer-

ence Problem

In this section we prove our trichotomy theorem for the complex-
ity of the inference problem in propositional circumscription. In
the light of Theorem 14, what remains to be proved is that every
problem Min-Inf-Csp(Γ) in coNP is either coNP-hard or in
P. Some important cases like Horn clauses [2] and affine clauses
[7] are already known to be coNP-complete. But to the best
of our knowledge the only case known to be in P is when the
knowledge base only consists of clauses containing at most one
positive and negative literal (i.e., clauses that are both Horn and
dual-Horn) [2]. Our main results is the discovery of two new
tractable classes of knowledge bases (width-2 affine and clauses
only containing negative literals) and a proof that for all other
classes of knowledge bases the problem is coNP-hard.

We prove this by further exploiting the results obtained in
[14], e.g., Theorem 12 that states that to determine the com-
plexity of Min-Inf-Csp(Γ) it is sufficient to consider constraint
languages that are relational clones.

Emil Post [16] classified all Boolean clones/relational clones
and proved that they form a lattice under set inclusion. Our
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proofs rely heavily on Post’s lattice of Boolean clones/relational
clones. An excellent introduction to Post’s classification of Bool-
ean clones can be found in the recent survey article [1], for a
more complete account, see [15, 17].

See Figure 4 for the lattice of Boolean relational clones. Note
that the names for the relational clones in Figure 4 do not agree
with Post’s names. Post also considered other classes of Boolean
functions/relations, so called iterative classes, and this leads to
some confusion and inconsistencies if we would use Post’s names.
The terminology used in Figure 4 was developed by Klaus Wag-
ner in an attempt to construct a consistent scheme of names for
clones/relational clones, and was subsequently used in [1].

Now we introduce some relational clones that will be of par-
ticular importance to us.

• Relational Clone IR2: For a ∈ {0, 1}, a Boolean function
f is called a-reproducing if f(a, . . . , a) = a. The clones Ra

contain all a-reproducing Boolean functions. The clone R2

contains all functions that are both 0-reproducing and 1-
reproducing. Hence Inv(R2) = IR2 is the relational clone
consisting of all relations closed under all functions that are
both 0-reproducing and 1-reproducing. Note that functions
satisfying f(a, . . . , a) = a for all a in its domain are usually
called idempotent.

• Relational Clone ID1: ID1 is the relational clone con-
sisting of all relations closed under the affine operation
f(x, y, z) = x ⊕ y ⊕ z and the ternary majority opera-
tion g(x, y, z) = xy ∨ yz ∨ xz. It is proved in [5] (Lemma
4.11) that any relation in ID1 can be represented as a lin-
ear equation on at most two variables over the two element
field GF (2). Constraint languages Γ ⊆ ID1 are usually
called width-2 affine in the literature.

• Relational Clone IS1: S1 is the clone consisting of all 1-
separating functions (see [1] for the definition of 1-separat-
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Figure 4: Lattice (under set inclusion) of all Boolean relational
clones (co-clones) and their complexity for the inference problem
in propositional circumscription. White means in P, light grey
means coNP-complete, and dark grey means ΠP

2
-complete.
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ing functions). It is proved in [6] (Lemma 39) that IS1 (i.e.,
Inv(S1)) is the relational clone consisting only of relations
of the form {0, 1}n \ (1, 1, . . . , 1). That is, IS1 consists of
all relations corresponding to clauses where all literals are
negative. Note that [6] uses Post’s original names for the
Boolean clones and that S1 is F∞

8 in Post’s notation.

As we have seen in Theorem 13 relational clones of the form
〈Γid〉 are of particular importance to us (remember that Min-
Inf-Csp(Γ) is of the same complexity as Min-Inf-Csp(Γid)).
We call relational clones of this form for idempotent relational
clones. It can be deduced that a relational clone Γ is idempotent
if and only if IR2 ⊆ Γ. Hence we have the following lemma.

Lemma 15 Let Γ1 be a Boolean relational clone and Γ2 the rela-
tional clone that is the least upper bound of IR2 and Γ1 in Post’s
lattice of relational clones. Then the following holds, Min-Inf-
Csp(Γ1) is in P ( coNP-complete, ΠP

2
-complete) if and only if

Min-Inf-Csp(Γ2) is in P ( coNP-complete, ΠP

2
-complete).

Proof: Remember that IR2 is the relational clone consisting
of all relations that are closed under all functions that are both
0-reproducing and 1-reproducing. Thus, {{(0)}, {(1)}} ⊆ IR2.
If F is a set of Boolean functions containing a non a-reproducing
function f , then {{(0)}, {(1)}} * Inv(F ). Hence, given a rela-
tional clone Γ, then {{(0)}, {(1)}} ⊆ Γ if and only if IR2 ⊆ Γ.

Thus it follows that the least upper bound of IR2 and Γ1

in the lattice of relational clones is 〈Γid1 〉 = Γ2. Now by Theo-
rem 13 we get that Min-Inf-Csp(Γ1) is in P (coNP-complete,
ΠP

2
-complete) if and only if Min-Inf-Csp(Γ2) is in P (coNP-

complete, ΠP

2
-complete). 2

Next we prove our two new tractable cases of Min-Inf-Csp(Γ).
First out is the width-2 affine case.

Lemma 16 Min-Inf-Csp(ID1) is in P.
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Proof: Remember that the set of constraints that can be ex-
pressed by ID1 can be represented as a system of linear equations
over GF (2) where each equation contains at most two variables.
Hence each constraint is equivalent to an equation of the follow-
ing form, x = c, x = y or x = −y, where c = 0 or 1.

Now consider an instance S = (V, P, Z,Q,C, ψ) of Min-Inf-
Csp(Γ), where Γ ⊆ ID1. We begin by reducing S = (V, P, Z,Q,
C, ψ) into an equivalent instance S ′ = (V ′, P ′, Z ′, Q′, C ′, ψ′) such
that C ′ has some special properties. Note that by the symmetry
of equations the cases where the roles of x and y are reversed are
handled in the same way.

• For all equations of the form x = c we do as follows. If
x = 1 (x = 0) is an equation in C and x (¬x) is a literal in
ψ, then every minimal model of C is also a model of ψ and
we are done. Otherwise, replace all occurrences of x in C
by 1 (0). Remove x from V , P , Z, Q, and remove ¬x (x)
from ψ. Finally remove x = c from C.

• For all equations of the form x = y (x = −y) where x ∈
Q and y is present in another equation we do as follows.
Replace all occurrences of y in all other equations and ψ
by x (−x) and remove y from V , P , Z, and Q. Finally
remove x = y (x = −y) from C.

• For all equations of the form x = y (x = −y) where y ∈
Z and y is present in another equation we do as follows.
Replace all occurrences of y in all other equations and ψ
by x (−x) and remove y from Z and V . Finally remove
x = y (x = −y) from C.

• For all equations of the form x = y (x = −y) where x ∈
P , y ∈ P , and y is present in another equation we do as
follows. Replace all occurrences of y in all other equations
and ψ by x (−x) and remove y from P and V . Finally
remove x = y (x = −y) from C.
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We repeat the above process until no more equations can be
removed. It can be realized that in the resulting system of equa-
tions C ′, no variable in Z ′ occurs in more than one equation, no
variable in Q′ occurs in an equation together with a variable that
occurs in another equation. Moreover, no variable in P ′ occurs
in an equation together with a variable from P ′ ∪Z ′ that occurs
in another equation.

Now, if ψ′ is a tautology, then of course ψ′ is true in every
minimal model of C ′, and we are done. So we assume that ψ′

is not a tautology. Since ψ′ is a clause it is easy to find the
(single) assignment of the variables (in ψ′) that does not satisfy
ψ′. Note that since C ′ is affine it is easy to decide whether a
partial solution can be extended to a total solution, and it is
clear that ψ′ can be inferred from C ′ under circumscription if
and only if this assignment cannot be extended to a minimal
solution to C ′. So the question that remains is whether this
partial solution (that can be extended to a total solution) can be
extended to a minimal solution to C ′ or not.

Consider the equations of the form x = y or x = −y where
neither x nor y is in Q and x is present in ψ′. Then an assignment
to x can be extended to a minimal solution to C ′ if and only if

• x is assigned to 0 in all equations x = y where x ∈ P ′ and
y ∈ P ′ ∪ Z ′ and all equations x = −y where x ∈ P ′ and
y ∈ Z ′, and

• x is assigned to 0 (1) in all equations x = y (x = −y) where
x ∈ Z ′ and y ∈ P ′.

2

Now on to the case of clauses where all literals are negative.

Lemma 17 Min-Inf-Csp(IS1) is in P.

Proof: We recall that IS1 consists of all relations corresponding
to clauses where all literals are negative. That is, relations of the
form {0, 1}n \ (1, 1, . . . , 1).
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Now consider an instance S = (V, P, Z,Q,C, ψ) of Min-Inf-
Csp(Γ), where Γ ⊆ IS1. The cases where ψ is a tautology is
trivial, so we assume that ψ is not a tautology. Since ψ is a
clause it is easy to find the (single) assignment of the variables
that does not satisfy ψ. It is clear that ψ can be inferred from
C under circumscription if and only if this assignment cannot be
extended to a minimal solution to C. Note that since C consists
of Horn clauses (with only negative literals) it is easy to decide
whether a partial solution can be extended to a total solution,
and it should be clear that such a partial solution can be extended
to a minimal solution if and only if all variables in P that are
assigned by this partial solution are assigned the value 0. Hence
Min-Inf-Csp(IS1) is in P. 2

Next we give the complexity of Min-Inf-Csp(Γ) for 8 par-
ticular relational clones.

Theorem 18 Min-Inf-Csp(Γ) is coNP-complete when:
1. Γ = IS2

11; 2. Γ = IS2
0 ; 3. Γ = IL; 4. Γ = IV ; or 5. Γ = IE.

Min-Inf-Csp(Γ) is in P when: 6. Γ = IS12; 7. Γ = ID1; or 8.
Γ = IM2.

Proof: We prove each statement separately.

1. The least upper bound of IS2
11 and IR2 is IS2

10. IS
2
10 con-

tains all Horn clauses with at most 2 variables and it is
proved in [2] that Min-Inf-Csp(IS2

10) is coNP-complete,
hence by Lemma 15 it follows that Min-Inf-Csp(IS2

11) is
coNP-complete.

2. IS2
0 contains clauses of the form (x∨y), that is clauses only

consisting of two positive literals. It is proved in [2] that
Min-Inf-Csp(IS2

0) is coNP-complete.

3. The least upper bound of IL and IR2 is IL2, the set of
affine clauses. It is proved in [7] that Min-Inf-Csp(IL2) is
coNP-complete, hence by Lemma 15 it follows that Min-
Inf-Csp(IL) is coNP-complete.
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4. The least upper bound of IV and IR2 is IV2, the set of
dual-Horn clauses. By Case 2. and Lemma 15 it follows
that Min-Inf-Csp(IV ) is coNP-complete.

5. The least upper bound of IE and IR2 is IE2, the set of
Horn clauses. By Case 1. and Lemma 15 it follows that
Min-Inf-Csp(IE) is coNP-complete.

6. It is proved in Lemma 17 that Min-Inf-Csp(IS1) is in P.
The least upper bound of IS1 and IR2 is IS12, hence by
Lemma 15 it follows that Min-Inf-Csp(IS12) is in P.

7. This is proved in Lemma 16.

8. IM2 consists of all clauses that are both Horn and dual
Horn. It is proved in [2] that Min-Inf-Csp(IM2) is in P.

2

The previous theorem together with the structure of Post’s
lattice of relational clones and the results proved in [14] yields a
trichotomy for the complexity of Min-Inf-Csp(Γ). The results
are summarized in terms of the relational clones in Figure 4. A
perhaps more intelligible summary is given in the conclusions
below.

4 Conclusions

Only one tractable case of the inference problem for proposi-
tional circumscription (where Q and Z need not to be empty) is
known, namely when the knowledge base only consists of clauses
that are both Horn and dual-Horn [2]. We have found two new
tractable classes of knowledge bases (width-2 affine clauses, and
Horn clauses only containing negative literals) for the inference
problem in propositional circumscription. We have proved that
the inference problem is coNP-hard for all other classes of knowl-
edge bases. This together with the results in [14] gives us the
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following trichotomy for the complexity of the inference problem
in propositional circumscription:

• P: If Γ is Horn and dual-Horn, width-2 affine, or negative
Horn;

• coNP-complete: If Γ is Horn, dual-Horn, affine, or bi-
junctive, (and not Horn and dual-Horn, width-2 affine, or
negative Horn);

• ΠP

2
-complete: If Γ is neither Horn, dual-Horn, affine, nor

bijunctive.

In closing we note that the problem of establishing a tri-
chotomy (as conjectured in [10]) for the complexity of the infer-
ence problem for propositional circumscription in the restricted
case where all variables must be minimized (Q = Z = ∅) is still
open.
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Propositional Abduction
is Almost Always Hard

Gustav Nordh and Bruno Zanuttini

Abstract

Abduction is a fundamental form of nonmonotonic reasoning that

aims at finding explanations for observed manifestations. Applica-

tions of this process range from car configuration to medical diagno-

sis. We study here its computational complexity in the case where the

application domain is described by a propositional theory built upon

a fixed constraint language and the hypotheses and manifestations

are described by sets of literals. We show that depending on the lan-

guage the problem is either polynomial-time solvable, NP-complete,

or ΣP

2
-complete. In particular, we show that under the assumption

P 6=NP, only languages that are affine of width 2 have a polynomial

algorithm, and we exhibit very weak conditions for NP-hardness.
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1 Introduction

In this paper we investigate the computational complexity of ab-
duction, a method of reasoning extensively studied by Peirce [4].
Abductive reasoning is used to search for explanations of ob-
served manifestations. The importance of this problem to Ar-
tificial Intelligence was first emphasized by Morgan [19] and by
Pople [20].

The abductive process has demonstrated its practical impor-
tance in many domains. In particular, it has been used to for-
malize processes in medical diagnosis [5], text interpretation [16],
system diagnosis [24] and configuration problems [1].

In this paper we are interested in propositional logic-based
abduction, i.e., the background knowledge is represented by a
propositional theory. Even in this framework several formaliza-
tions of the problem have been studied in the literature, depend-
ing on the syntactic restrictions imposed to the manifestations
and on the hypotheses over which explanations must be formed.
We use the following formalization: Given a propositional the-
ory T formalizing a particular application domain, a set M of
literals describing a set of manifestations, and a set H of literals
containing possible hypotheses, find an explanation for M , that
is, a set E ⊆ H such that T ∪ E is consistent and logically en-
tails M . This framework is more general than most frameworks
studied in the literature; an exception is the definition by Mar-
quis [18], which allows the manifestation to be encoded by any
propositional formula.

Example 1 Consider the following example from the domain of
motor vehicles, inspired by [6].
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T = (¬rich mixture∨¬lean mixture)∧
(rich mixture→ ¬low fuel consumption)∧
(lean mixture→overheating)∧
(low water→overheating),

H = {rich mixture, lean mixture, low water},
M = {¬low fuel consumption, overheating}.

Then E = {rich mixture, low water} is an explanation of M ,
while, e.g., {lean mixture, low water} is not because it does not
explain low fuel consumption, and {rich mixture, lean mixture}
is not because it is inconsistent with T .

Formalizations of abduction also differ in the literature in the
notions of preferred explanations: In this setting, the aim is to
compute an explanation that is minimal among all explanations
according to some criteria (e.g., inclusion or cardinality). A good
overview is given by Eiter and Gottlob [12]. However we are not
concerned here with these different notions; we indeed focus on
the decision problem asking whether there exists an explanation
at all for a given instance. This problem is from now on denoted
Abduction.

This problem is well-studied from the computational com-
plexity perspective [14, 23, 12, 10, 9, 26], although with dif-
ferent formalizations of the problem, as mentioned above. It
has been proved that it is ΣP

2
-complete in the general case [12],

while propositional deduction is known to be “only” coNP-
complete [7]. This negative result raises the problem of iden-
tifying restricted cases in which Abduction has computational
complexity lower than the general case.

The most natural way to study such restrictions is to study
restrictions on the theories representing knowledge bases. This
is also the approach followed in most of the previous research
in the area. For example, it is known that when the knowledge
base T is a conjunction of Horn clauses, then Abduction is
NP-complete [23].

The ultimate goal of this line of research is to determine the
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complexity of every restricted special case of the problem. The
first result of this type was proved by Schaefer [22], who proved
that the satisfiability problem of conjunctions of Boolean con-
straints over a fixed language is either in P or NP-complete,
depending on the language. Recall the result due to Ladner [17]
stating that if P 6= NP, then there exist decision problems in
NP that are neither in P nor NP-complete. Hence the exis-
tence of dichotomy theorems like Schaefer’s cannot be taken for
granted. The book by Creignou et al. [8] surveys such results.

In this paper we completely classify the complexity of Ab-
duction in Schaefer’s framework and exhibit a trichotomy. More
precisely, we prove that Abduction is:

• In P if the language is affine of width 2,

• Otherwise, NP-complete if the language is Horn, dual Horn,
bijunctive or affine,

• Otherwise, ΣP

2
-complete.

As far as we know, the (only) polynomial case and the minimal
NP-hard languages that we exhibit are all new results. Note
that the only property that guarantees a polynomial algorithm
is that of being affine of width 2, i.e., the case where the theory
representing the domain is only a conjunction of constants and
(in)equalities between two variables. Thus the problem is very
hard as soon as sets of literals are allowed as hypotheses and
manifestations (instead of atoms or sets of atoms as in, e.g., [26]).

We do not consider directly the complexity of the search prob-
lem consisting of computing an explanation or asserting there is
none. It is however easily seen that this problem is hard as soon
as Abduction is; as for languages that are affine of width 2, our
proof that Abduction is in P exhibits an efficient algorithm.

152



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 153 — #165

2 Preliminaries

The set of all n-tuples of elements from {0, 1} is denoted by
{0, 1}n. Any subset of {0, 1}n is called an n-ary relation on
{0, 1}. The set of all finitary relations over {0, 1} is denoted by
BR. A constraint language over {0, 1} is an arbitrary finite set
Γ ⊆ BR. Constraint languages are the way in which we impose
restrictions on the knowledge bases for the Abduction problem.

A constraint over the constraint language Γ is an application
of a relation R in Γ to a tuple of variables, written R(x1, . . . , xn)
(possibly with repeated variables). An assignment m to the vari-
ables satisfies the constraint R(x1, . . . , xn) if (m(x1), . . . ,m(xn))
is a tuple in R. Such a satisfying assignment m is called a model
of R(x1, . . . , xn). A theory T over Γ is a conjunction of con-
straints over Γ; a model m of T is an assignment that satisfies all
its constraints simultaneously, denoted m |= T . If there is such
a model, T is said to be satisfiable. Finally, a theory T entails a
theory T ′, written T |= T ′, if every model of T is a model of T ′.

The unary relations F = {(0)} and T = {(1)}, which force
the value of a variable to 0 and 1 respectively, have a special role
for the Abduction problem. We will often use the shorthand
notation ¬x and x to denote the constraints F (x) and T (x) re-
spectively. Constraint languages containing F and T will be of
particular importance to us. Given a constraint language Γ, the
idempotent constraint language corresponding to Γ is Γ∪ {F, T}
which is denoted by Γid.

Given a theory T , V ars(T ) denotes the set of all variables
that occurs in T . Given a set of variables V , Lits(V ) denotes
the set of constraints

⋃

x∈V {F (x)∪T (x)} or, equivalently, the set
of all literals formed upon the variables in V . The opposite of a
literal ℓ is written ℓ. Given a set of literals L, their conjunction
is denoted by

∧

L.
The Abduction problem restricted to the finite constraint

language Γ is denoted by Abduction(Γ) and is defined as fol-
lows; the problem is said to be parameterized by Γ.
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Problem 2 (Abduction(Γ)) An instance P of Abduction(Γ)
consists of a tuple (V,H,M, T ), where:

• V is a set of variables,

• H ⊆ Lits(V ) is the set of hypotheses,

• M ⊆ Lits(V ) is the set of manifestations, and

• T is a theory over Γ with V ars(T ) = V .

The question is whether there exists an explanation for P, i.e., a
set E ⊆ H such that T ∧

∧

E is satisfiable and T ∧
∧

E |=
∧

M .

The size of P = (V,H,M, T ) is the total number of occur-
rences of variables in it.

Recall the following standard restrictions on the constraint
languages (see, e.g. [8]).

Definition 3 (restrictions on Γ)

• Γ is Horn if every relation R in Γ is the set of models of
a CNF formula having at most one unnegated variable in
each clause,

• Γ is dual Horn if every relation R in Γ is the set of models
of a CNF formula having at most one negated variable in
each clause,

• Γ is bijunctive if every relation R in Γ is the set of models of
a CNF formula having at most two literals in each clause,

• Γ is affine if every relation R in Γ is the set of models of a
system of linear equations over GF (2), the field with two
elements,

• Γ is affine of width 2 if every relation R in Γ is the set of
models of a system of linear equations over GF (2) in which
each equation has at most 2 variables.
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We emphasize that Γ is assumed to be a finite constraint
language in the definition of Abduction(Γ). Moreover, it pa-
rameterizes the problem, and is not part of its input. Thus we
can assume any convenient presentation of the relations in Γ is
stored in a catalog; thus we will assume, e.g., that if Γ is Horn
then a theory T over Γ is given as a CNF formula with at most
one unnegated variable per clause.

We now recall Schaefer’s result, which will be of great im-
portance throughout the paper. Call Sat(Γ) the problem of
deciding whether a given theory over Γ is satisfiable. Schaefer
completely classified the complexity of Sat(Γ); we only report
the result for idempotent constraint languages.

Theorem 4 ([22]) Sat(Γid) is in P if Γ is Horn, dual Horn,
bijunctive or affine. Otherwise it is NP-complete.

Finally, we assume that the reader is familiar with the basic
notions of complexity theory, but we briefly recall the follow-
ing. P is the class of decision problems solvable in deterministic
polynomial time. NP is the class of decision problems solv-
able in nondeterministic polynomial time. ΣP

2
=NPNP is the

class solvable in nondeterministic polynomial time with access
to an NP-oracle. A problem is NP-complete (ΣP

2
-complete) if

every problem in NP (ΣP

2
) is polynomial-time reducible to it.

Throughout the paper we assume P6=NP6=ΣP

2
.

3 Polynomial Case

The following proposition gives the only (maximal) polynomial
case of the Abduction(Γ) problem. Note that, as mentioned
in the introduction, its proof gives a polynomial algorithm that
computes an explanation if there exists one.

Throughout the proof we write (ℓ = a) (a ∈ {0, 1}) for the
linear equation (x = a) if ℓ = x, and for the linear equation
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x = a⊕ 1 if ℓ = ¬x. The shorthand (ℓ = ℓ′) is used in the same
manner and is equivalent to (ℓ⊕ ℓ′ = 0).

Proposition 5 If Γ is affine of width 2, then Abduction(Γ)
is polynomial.

Proof: Let P = (V,H,M, T ) be an instance of Abduct-
ion(Γ), where Γ is affine of width 2. If M ′ is the set of all
manifestations m such that T 6|= m, then obviously the explana-
tions of P are exactly those of (V,H,M ′, T ). Since T |= m can
be decided efficiently with Gaussian elimination on T ∧ (m = 0),
we assume M ′ = M .

For every manifestation m ∈M write Em for the set of literals
{h ∈ H | T |= (h = m)}; once again every Em can be computed
efficiently with Gaussian elimination on T ∧ (h ⊕ m = 1) for
every h ∈ H. We show that P has an explanation if and only
if T ∧

∧

m∈M

∧

Em is satisfiable and no Em is empty. Since the
satisfiability of T ∧

∧

m∈M

∧

Em can be decided efficiently with
again Gaussian elimination (on T ∧

∧

m∈M

∧

h∈Em
(h = 1)), this

will conclude the proof.
Assume first P has an explanation E. Then T ∧

∧

M is
consistent; since for every m ∈ M and h ∈ Em we have T |=
(h = m), we also have T ∧

∧

M |= T ∧
∧

m∈M

∧

Em, and thus
T ∧

∧

m∈M

∧

Em is satisfiable. Now we also have ∀m ∈ M,T |=
(
∧

E → m). Since T is affine of width 2 it is bijunctive, thus
every clause entailed by T can be minimized into a bijunctive
one; since T ∧

∧

E is satisfiable and T 6|= m, the only possibil-
ity is a minimal clause of the form h → m with h ∈ E. But
since T is affine this implies that m → h also is an implicate
of it, and finally we have T |= (h ⊕ m = 0), which shows that
Em is nonempty. For more details we refer the reader to [25].
Conversely, assume T ∧

∧

m∈M

∧

Em is satisfiable and no Em is
empty. Then since (h⊕m = 0) |= (h→ m) it is easily seen that
∧

m∈M

∧

Em is an explanation for P. 2
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4 NP-complete Cases

We now exhibit the NP-complete cases of Abduction(Γ). Since
T ∧

∧

E |=
∧

M holds if and only if T ∧
∧

E ∧ ℓ is unsatisfiable
for every ℓ ∈M , the following result is obvious.

Lemma 6 If Sat(Γid) is in P, then Abduction(Γ) is in NP.

We first establish NP-completeness for particular languages.
In Section 5 we will establish more general results.

Let R¬x∨y = {(1, 1), (0, 1), (0, 0)}, i.e., the set of models of
¬x ∨ y. Observe that R¬x∨y is both Horn and dual Horn.

Proposition 7 Abduction({R¬x∨y}) is NP-complete.

Proof: Membership in NP follows directly from Theorem 4 and
Lemma 6. As regards hardness, we give a reduction from the NP-
complete problem Monotone-Sat [15], i.e., the satisfiability
problem for CNF formulas where each clause contains either only
positive literals or only negative literals. Let ψ =

∧k

i=1Ni ∧
∧ℓ

i=1 Pi be such a formula, where each Ni is a negative clause,
written Ni =

∨νi

j=1 ¬x
j
i , and every Pi is a positive clause written

Pi =
∨πi

j=1 y
j
i . We build the instance P = (V,H,M, T ) of Abd-

uction(R¬x∨y) where:

• V = {γi | i = 1, . . . , k} ∪ {δi | i = 1, . . . , ℓ} ∪ V ars(ψ); ¬γi
will intuitively represent satisfaction of clause Ni and δi,
that of clause Pi

• T =
∧k

i=1

∧νi

j=1(x
j
i ∨¬γi)∧

∧ℓ

i=1

∧πi

j=1(¬y
j
i ∨δi); this encodes

the implications ¬xji → ¬γi and yji → δi, i.e., the fact
that Ni (Pi) is satisfied if at least one of the ¬xji (yji ),
j ∈ {1, . . . , νi} (j ∈ {1, . . . , πi}) is

• H = Lits(V ars(ϕ))

• M =
∧k

i=1 ¬γi ∧
∧ℓ

i=1 δi.
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Obviously enough, the theory T is over the language {R¬x∨y}.
Now it is easily seen that if ψ has at least one model, say m,
then E = {ℓ | m |= ℓ} is an explanation for P, and that if P

has an explanation E, then any assignment m to V ars(ψ) with
∀ℓ ∈ E,m |= ℓ is a model of ψ. 2

Similarly, we now prove that Abduction(Γ) is NP-complete
if Γ is the singleton language containing only the relation Rx∨y =
{(1, 1), (1, 0), (0, 1)}.

Proposition 8 Abduction({Rx∨y}) is NP-complete.

Proof: Since Rx∨y is dual Horn, membership in NP follows from
Theorem 4 and Lemma 6. As for hardness, we give a reduction
from Monotone-Sat (see the proof of Proposition 7), where
positive clauses in an instance of this problem are restricted to
contain at most two literals. Thus an instance of this problem
is a formula of the form ψ =

∧k

i=1Ni ∧
∧ℓ

i=1(y
1
i ∨ y2

i ), where
the yji ’s are variables and every Ni is a negative clause written
Ni =

∨νi

j=1 ¬x
j
i . The NP-completeness of this restricted problem

follows directly from Schaefer’s result [22].
Given an instance ψ of Monotone-Sat as above we build

the instance P = (V,H,M, T ) of Abduction({Rx∨y}) where:

• V = {γi | i = 1, . . . , k}∪V ars(ψ); γi will intuitively repre-
sent satisfaction of clause Ni

• T =
∧k

i=1

∧νi

j=1(x
j
i ∨ γi) ∧

∧ℓ

i=1(y
1
i ∨ y2

i ); clauses (xji ∨ γi)

encode the implications ¬xji → γi

• H = Lits(V ars(ϕ))

• M =
∧k

i=1 γi.

We show that ψ has a model if and only if P has an explanation.
Assume first that ψ has a model m; then it is easily seen that
E = {ℓ | m |= ℓ} is an explanation for P. Now assume P has an
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explanation E. Then from ∀i = 1, . . . , k, T ∧
∧

E |= γi it follows
that for every i = 1, . . . , k E contains at least one ¬xji , and thus
any assignment satisfying E satisfies every negative clause of ψ;
on the other hand, since T ∧

∧

E is satisfiable there is a model
m of T ∧

∧

E that satisfies every positive clause of ψ, and this
m thus satisfies ψ. 2

The following proposition can be shown with the same proof
as Proposition 8 with all variables renamed.

Proposition 9 Let R¬x∨¬y = {(1, 0), (0, 1), (0, 0)}. Then the
Abduction({R¬x∨¬y}) problem is NP-complete.

We finally prove that Abduction(Γ) is NP-complete for a
particular affine language. This will be achieved by reducing to it
another important problem in nonmonotonic reasoning, namely
the inference problem for propositional circumscription. A model
m = (m1, . . . ,mn) of a formula ϕ is said to be a minimal model of
ϕ if there is no model m′ = (m′

1, . . . ,m
′
n) of ϕ such that m 6= m′

and ∀i = 1, . . . , n,m′
i ≤ mi.

Durand and Hermann proved that the inference problem for
propositional circumscription of affine formulas is coNP-complete.
In the process, they proved the following theorem.

Theorem 10 ([11]) The problem of deciding whether there is a
minimal model of a given affine formula ϕ that does not satisfy
a given negative clause (¬q1 ∨ · · · ∨ ¬qn) (∀i = 1, . . . , n, qi ∈
V ars(ϕ)) is NP-complete.

A careful reading of their proof shows that the theorem re-
mains true even if the linear equations in the input affine formulas
are all restricted to contain at most 6 variables. We thus define
the language Γ6aff to be the set of all k-ary affine relations with
k ≤ 6. Obviously, Γ6aff is finite, which is necessary for problem
Abduction(Γ6aff) to be well-defined.

Proposition 11 Abduction(Γ6aff) is NP-complete.

159



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 160 — #172

Proof: Membership in NP follows directly from Theorem 4 and
Lemma 6. As for hardness, let ϕ be a formula and q1, . . . , qn ∈
V ars(ϕ). We show that the clause (¬q1 ∨ · · · ∨ ¬qn) is false in
some minimal model of ϕ if and only if the abduction prob-
lem with T = ϕ, M = {q1, . . . , qn}, and H = {¬x | x ∈
V ars(ϕ) \ {q1, . . . , qn}} has an explanation, which will conclude
by Theorem 10 and the above remark.

Assume first that (¬q1∨· · ·∨¬qn) is false in a minimal model
m of ϕ. Define E to be {¬xi | m |= ¬xi}. Since m |= ϕ by
assumption and m |=

∧

E by construction, ϕ∧
∧

E is satisfiable.
Now assume for sake of contradiction that there is m′ satisfying
ϕ∧
∧

E∧(¬q1∨· · ·∨¬qn). Then sincem′ |=
∧

E and E is negative
we get ∀x ∈ E,m′(x) ≤ m(x); now for x ∈ V ars(ϕ) \ V ars(E)
we have by assumption m(x) = 1 and thus m′(x) ≤ m(x) again.
Finally, we have ∃qi,m

′(qi) = 0 < 1 = m(qi), which contradicts
the minimality of m. Thus ϕ∧

∧

E |= (q1 ∧ · · · ∧ qn) and E is an
explanation.

Conversely, assume that E is an explanation. Then ϕ∧
∧

E is
satisfiable; write m for one of its minimal models. By assumption
the formula ϕ ∧

∧

E ∧ (¬q1 ∨ · · · ∨ ¬qn) is unsatisfiable, thus
m 6|= (¬q1 ∨ · · · ∨ ¬qk). We also have m |= ϕ by assumption.
Finally, assume for sake of contradiction that m is not a minimal
model of ϕ, and let m′ be such that m′ |= ϕ, m′ ≤ m and m′ 6= m.
Then since E is negative (because H is) and m |=

∧

E we have
m′ |=

∧

E, thus m′ |= ϕ∧
∧

E, which contradicts the minimality
of m among the models of ϕ ∧

∧

E. 2

5 Classification

We finally put together the results in the previous sections for
obtaining our complete classification. The concept of a relational
clone is central to our approach.

Definition 12 (relational clone) Let Γ ⊆ BR. The relational
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clone of Γ is written 〈Γ〉 and is the set of all relations that can be
expressed using relations from Γ∪{=} (= is the equality relation
on {0, 1}), conjunction, and existential quantification.

Intuitively, the constraints over 〈Γ〉 are those which can be
simulated by constraints over Γ.

The following result states that when studying the complex-
ity of the Abduction(Γ) problem it is enough to consider con-
straint languages that are relational clones.

Lemma 13 Let Γ be a finite constraint language and Γ′ ⊆ 〈Γ〉
finite. Then Abduction(Γ′) is polynomial-time reducible to
Abduction(Γ).

Proof: Let (V ′, H ′,M ′, T ′) be an instance of Abduction(Γ′).
By the definition of a relational clone there is a set of variables W
disjoint from V ′ and a theory T= over Γ∪{=} with V ars(T=) =
V= = V ′ ∪ W and such that T ′ is logically equivalent to the
formula ∃W,T=. Since W is disjoint from V ′ there is no variable
occurring in H ′ or M ′ and in W at the same time, and it is then
easily seen that the abduction problem (V=, H

′,M ′, T=) has an
explanation if and only if (V ′, H ′,M ′, T ′) has one. Now for every
constraint (xi = xj) (i < j) it is enough to replace xj with xi
everywhere in V=, T=,M

′ and H ′ and to remove the constraint
from T= for obtaining a still equivalent instance (V,H,M, T ) of
Abduction(Γ), which concludes. 2

We can reduce even further the set of constraints languages
to be considered, namely to idempotent ones.

Lemma 14 Let Γ be a finite constraint language. Abduct-
ion(Γid) is polynomial time reducible to Abduction(Γ).

Proof: Let P = (V,H,M, T ) be an instance of Abduct-
ion(Γid). We build an instance P ′ = (V,H ′,M ′, T ′) of Abd-
uction(Γ) by removing every constraint F (x) or T (x) from
T and adding it to H and M . It is then easy to see that

161



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 162 — #174

(V,H ′,M ′, T ′) has an explanation if and only if (V,H,M, T ) has
one. 2

Given these two lemmas, our classification of the complex-
ity of the Abduction(Γ) problem heavily relies on Post’s re-
markable classification of all Boolean relational clones [21]. Post
proved in particular that the relational clones form a lattice un-
der set inclusion. An excellent introduction to Post’s lattice can
be found in the recent survey articles [2, 3].

Lemmas 13 and 14 say that for any finite Γ′ ⊆ 〈Γid〉, Abd-
uction(Γ′) is polynomial-time reducible to Abduction(Γ). In
other words, when studying the complexity of Abduction(Γ) it
is enough to consider constraint languages that are idempotent
relational clones. The lattice of all idempotent Boolean relational
clones is given on Figure 5.

Those that are most relevant to our classification are the fol-
lowing:

• BR, the set of all Boolean relations,

• IE2, the set of all Horn relations,

• IV2, the set of all dual Horn relations,

• ID2, the set of all bijunctive relations,

• IL2, the set of all affine relations,

• ID1, the set of all affine relations of width 2,

• IM2, the set of all relations that are Horn and dual Horn.

Thus, according to Post’s lattice there is only one idempotent re-
lational clone that is not Horn, not dual Horn, not affine, and not
bijunctive, namely the relational clone consisting of all Boolean
relations BR. Hence the following result follows intuitively from
the result due to Eiter and Gottlob [12] stating that Abduc-
tion is ΣP

2
-complete for the general case of theories given by

CNF formulas.
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Figure 5: Lattice of all idempotent Boolean relational clones.

Proposition 15 If Γ is not Horn, not dual Horn, not affine and
not bijunctive then Abduction(Γ) is ΣP

2
-complete.

Proof: It is well-known that for any CNF formula ψ there is
a set of variables W disjoint from V ars(ψ) and a CNF formula
ψ′ over V ars(ψ) ∪W with at most 3 variables per clause such
that the formulas ψ and ∃Wψ′ are logically equivalent. That fact
together with a proof similar to that of Lemma 13 show that the
abduction problem for general CNF theories reduces to Abd-
uction(Γ3), where Γ3 is the (finite) set of all ternary relations.
Since Γ3 is not Horn, not dual Horn, not affine and not bijunctive,
we have 〈Γid3 〉 = BR, and Lemma 13 and Lemma 14 concludes.
2

163



“tecphdthesiseng” — 2007/4/19 — 11:09 — page 164 — #176

We are finally able to classify the complexity of Abduct-
ion(Γ).

Theorem 16 (classification) Let Γ be a constraint language.
Then, the Abduction(Γ) problem is:

• In P if Γ is affine of width 2,

• Otherwise, NP-complete if Γ is Horn, dual Horn, bijunc-
tive or affine,

• Otherwise, ΣP

2
-complete.

Proof: Proposition 5 shows the result for languages that are
affine of width 2. Now it can be seen that the relations R¬x∨y,
Rx∨y and R¬x∨¬y of Propositions 7, 8 and 9 are in the relational
clones IM2, IS

2
02 and IS2

12, respectively; this can be verified by
checking that they are invariant under the operations defining
the corresponding clones (for more details see [2, 3]). Moreover,
the language Γ6aff of Proposition 11 is affine, thus it is in IL2.
Consequently, Figure 5 shows that the minimal idempotent re-
lational clones that are not affine of width 2, namely IM2, IS

2
02,

IS2
12 and IL2 are NP-complete. On the other hand, we know

from Theorem 4 and Lemma 6 that the relational clones IL2

(affine), ID2 (bijunctive), IE2 (Horn) and IV2 (dual Horn) are
in NP. Thus Abduction(Γ) is NP-complete when 〈Γid〉 con-
tains IM2, IS

2
02, IS

2
12 or IL2 and is contained in IL2, ID2, IE2,

or IV2. This covers exactly the languages that are Horn, dual
Horn, bijunctive, or affine and that are not affine of width 2.

Finally, Proposition 15 concludes the proof. 2

6 Discussion and Future Work

We have completely classified the complexity of propositional
abduction in Schaefer’s framework when manifestations and hy-
potheses are described by sets of literals. This result can prove
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useful in helping the designers of knowledge based systems to
deal with the expressivity/tractability tradeoff when choosing a
language for their system. Our result indeed completes the pic-
ture of the complexity of reasoning for propositional constraint
languages. In particular, we have shown that this problem is very
hard, in the sense that only languages that are affine of width
2 allow for polynomial abduction. Also note that in many cases
NP-hardness remains even when restricting further the problem;
e.g., to H = Lits(V \V ars(M)) (see the proofs of Propositions 7–
9).

It is important to note that the complexity of abduction for
a constraint language given in extension (i.e., by the set of all
tuples in every relation) can be determined efficiently; the case of
Theorem 16 in which a language falls can indeed be determined
efficiently by using the closure properties of the concerned co-
clones (see, e.g., [3]).

It would be interesting to try to extend this work into at
least three directions. First of all, besides the problem of decid-
ing the existence of an explanation for a given instance, of great
importance are the problems of relevance and necessity, which
ask whether a given hypothesis is part of at least one (resp. of
all) preferred explanation(s). These problems involve a prefer-
ence criterion which can have a great impact on their complexity;
for more details we refer the reader to [12]. Hence, it would be
interesting to investigate the complexity of these problems. In
the same vein, Eiter and Makino recently studied the problem
of enumerating all the explanations of a Horn abduction prob-
lem [13]; it would be interesting to try to extend their work to
other classes of formulas.

Secondly, although Schaefer’s framework is quite general, the-
re are restrictions on propositional formulas that it cannot ex-
press. For instance, Eshghi [14] and del Val [9] study such re-
strictions that yield polynomial cases of the abduction problem.
It would thus be of great interest to try to identify still more
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such tractable classes.
Finally, it would be interesting to study the case where the

domains of variables are more general, e.g., for conjunctions of
constraints over finite domains.
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