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Abstract. We study the complexity of the problemA® SoL which is a natural
optimisation version of the graph homomorphism problenve@ia fixed target
graphH with V(H) C N, and a weight functiom : V(G) — Q™, an instance
of the problem is a grap&¥ and the goal is to find a homomorphisin G — H
which maximisesy_, .. f(v) - w(v). MAX SoL can be seen as a restriction of
the MiN HoM-problem [Gutin et al., Disc. App. Math., 154 (2006), pp. S839]
and as a natural generalisation oAk ONESto larger domains. We present new
tools with which we classify the complexity of Mk SoL for irreflexive graphs
with degree less than or equal 2cas well as for small graphsW((H)| < 4).
We also study an extension of A SoL where value lists and arbitrary weights
are allowed; somewhat surprisingly, this problem is potyia-time equivalent
to MIN HOM.

Keywords: constraint satisfaction, homomorphisms, computatiaoahplexity, opti-
misation

1 Introduction

Throughout this paper, by a graph we mean an undirected gvizipbut multiple edges
but possibly with loops. Aomomorphisnrom a graph= to a graphi is a mappingf
fromV(G)to V(H) suchtha{f(v), f(v")) is an edge off wheneve(v, v') is an edge
of G. The homomorphism problem with a fixed target grdplakes a graplir as input
and asks whether there is a homomorphism ft@o H. Hence, by fixing the grapH
we obtain a class of problems, one for each grAplror example, the graph homomor-
phism problem with fixed target gragi = {(vo,v1), (v1,v0)}, denoted by ldM(H),
is exactly the problem of determining whether the input gr@gs bipartite (i.e., the 2-
COLORING problem). Slmllarly, ifH = {(’Uo, ’Ul), (’Ul, UQ), (’Ul, Ug), (Ug, ’Ul), (’Uo, Ug),
(v2,v0)}, then HOM(H) is exactly the 3-©LORING problem. More generally, iff is
the clique ork-vertices, then ldm(H) is thek-COLORING problem.
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Hence, the l&Mm(H) class of problems contains several well studied problsorag
of which are inP (e.g, 2-®LORING) and others which ar&lP-complete (e.g.k-
COLORING for k > 3). A celebrated result, due to Hell and Nesetril [9], statest t
Hom(H)isinPif H is bipartite or contains a looped vertex, and that iz&complete
for all other graphgi. For more information on graph homomorphism problems ir gen
eral and their complexity in particular, we refer the reatethe excellent monograph
by Hell and Nesetril [10].

In this paper we study a natural optimisation variant of treviii/) problem, i.e.,
we are not only interested in the existence of a homomorpbishwant to find the
“best homomorphism”. We let the vertices Bf be a subset of the natural numbers,
w: V(G) — QT be a weight function and look for a homomorphignrom G to H
that maximise the su ., w(v) - h(v). We call this problem the maximum solution
problem (with a fixed target grapt) and denote it by Mx SoL(H).

Just as the EBM(H) problem captures several interesting combinatatedision
problems, it is clear that the Mk SOL(H) captures several interesting combinatorial
optimisationproblems. The Mx SoL(H) problem whered = {(0,0), (0,1), (1,0)}
is exactly theNP-hard optimisation problem WIGHTED MAXIMUM INDEPENDENT
SET. MAX SoL can also be seen as a natural generalisationaX MNES or, alterna-
tively, as a variation of the integer linear programminglpemn.

Gutin et al. [7] introduced Mv HoM, another homomorphism optimisation prob-
lem motivated by a real-world application in defence lagsstThis problem was stud-
ied in [5,6] and among other things, a dichotomy was estadtisfor (undirected)
graphs. In particular, Mi Hom(H) was shown to be tractable whenevéiis aproper
interval graphor aproper interval bigraphWhen formulated as a minimization prob-
lem, MAX SoL is easily seen to be a restriction ofiMHOM.

In [13], MAX SoL was studied as an optimisation variant of the constraint sat
isfaction problem over arbitrary constraint language®réhlanguages defined using
a many-valued logic were characterised as being eithempatyal time solvable or
APX-hard. This was accomplished by adopting algebraic tectasidrom the study
of constraint satisfaction problems. In this paper, we oot the study of Mx SoL.
We look at languages given by undirected graphs. In padicuwe give a complete
classification of the tractability of languages given beflexive graphs which have de-
gree less than or equal o We also classify the cases whBn(H)| < 3 and when
V(H) ={0,1,2,3}. An interesting observation in these cases is that for saaehg,
the complexity of the problem depends very subtly on the eslof the vertices. In
particular, applying an order preserving map on the valugg change the complexity.

Furthermore, we consider two natural extensions of thexNboL-framework. One
is to relax the restriction of the weights and allow arbigrggossibly negative) rational
weights on the variables. The other is to attribute a ligt;), of allowed values to each
vertexv in the input instance. The list is a subsel@fff ) and any solution must assign
v to one of the vertices ifL(v). In this paper we focus, apart from the ordinarpii
SoL, on the most general extreme, where we allow both lists abirary weights.
This problem, which we call IST MAX AW SoL, can be seen both as an optimisation
version of L-HOM(#H), thelist homomorphism problergsee [3, 4]) while it is still a



restriction of MN HoM. We show that for each undirected grafh LiIsT MAX AW
SoL(H) and MIN HOM(H) are in fact (polynomial time) equivalent.

The paper is organised as follows. In Section 2 we give a fbd@finition of Csp
and the problems Mx SoL and LIsT MAx AW SoL. In Section 3 we formalise the
algebraic framework for studying Mk SoL. We also give a number of basic results
which are used throughout the paper. These results arestiteg in their own right,
as many of them apply to general constraint languages. Hudtsdor Max SoL are
given in Section 4. In Section 5 we show the equivalenceleffIMAXx AW SoL and
Min Hom for undirected graphs, before concluding in Sec@ion

2 Preliminaries

We formally define constraint satisfaction as follows: UetC N (the domain be a
finite set. The set of alk-tuples of elements fron® is denoted byD". Any subset of
D™ is called ann-ary relation onD. The set of all finitary relations ovép is denoted
by Rp. A constraint language over a finite sét, is a finite setl” C Rp. Constraint
languages are the way in which we specify restrictions orpoainlems. The constraint
satisfaction problem over the constraint languagelenoted GP(I"), is defined to be
the decision problem with instand&’, D, C'), whereV is a set of variablesD is a
finite set of values (the domain), addis a set of constraintsCi, ..., C,}, in which
each constrain€’; is a pair(s;, 0;) with s; a list of variables of lengthn;, called the
constraint scope, angl anm;-ary relation over the sab, belonging tol”, called the
constraint relation. The question is whether there existslation to(V, D, C') or not,
that is, a function from/ to D such that, for each constraint @, the image of the
constraint scope is a member of the constraint relation.

List Maximum Solution with Arbitrary Weightsser a constraint language, de-
noted LUST MAX AW SoL(I"), is the maximization problem with

Instance: Tuple(V, D, C, L,w), whereD is a finite subset oR, (V, D, C) is a Csp
instance over’, L : V — 2P is a function fromV’ to subsets oD, andw : V — Q
is a weight function.

Solution: An assignmentf : V — D to the variables such that all constraints are
satisfied and such thg{v) € L(v) forallv € V.

Measure: > .y f(v) - w(v)

Weighted Maximum Solutiasver I", MAX SoL(I"), is then defined by restricting
w to non-negative rational numbers and lettih@) = D forallv € V.

Let G be a graph. For a fixed gragh, theMinimum Cost Homomorphism Problem
[7], MIN HOM(H ), is the problem of finding a graph homomorphignirom G to H
which minimisesy_, ¢y ) ¢ (v), Wherec;(v) € QT are costs, fov € V(G),i €
V(H).

Let G be a graph and/ be a subgraph off. H is aretract of G if there exists
a graph homomorphisnfi : G — H such thatf(v) = v for all v € V(H). The
Retraction ProblemRET(H ), is to determine whether or néf is a retract of.



Let F = {I4,...,I;} be a family of intervals on the real line. A graph with
V(G) = Fand(l;,I;) € E(G) ifand only if ; N I; # () is called arinterval graph.
If the intervals are chosen to be inclusion-fréeis called gproper interval graph.

Let iy = {,..., I} andF», = {Jy,...,J;} be two families of intervals on
the real line. A graptG with V(G) = Fy U F; and(I;, J;) € E(G) if and only if
I, N J; # 0 is called aninterval bigraph . If the intervals in each family are chosen to
be inclusion-free( is called aproper interval bigraph .

Interval graphs are reflexive, while interval bigraphs arefiexive and bipartite.

3 Methods

3.1 Algebraic framework

An operation onD is an arbitrary functiory : D* — D. Any operation onD can be
extended in a standard way to an operation on tuples Byas follows: Letf be ak-
ary operation oD and letR be ann-ary relation ovelD. For any collection of: tuples,
t1,...,tx € R, definef(t1,...,te) = (f(t1[1],.. ., te[l]),..., f(t1[n], ... tx[n]))
wheret;[i] is thei-th component in tuple;. If f is an operation such that for all
t1,ta,...,tx € R, we havef(ty,ta,...,t;) € R, thenR is said to be invariant under
f. If all constraint relations id" are invariant undef, then" is invariant undeyf. An
operationf such that/” is invariant underf is called apolymorphisnof I". The set of
all polymorphisms of" is denotedPol(I"). Sets of operations of the form Pdl( are
known asclones and they are well-studied objects in algebra (cf. [15]).

A first-order formulap over a constraint languadeis said to beprimitive positive
(we say¢ is a pp-formula for short) if it is of the formax : (P (x1) A ... A Py(xx))
whereP,..., P, € I andxy,...,x; are vectors of variables such tHé&;| = |x;]
for all i. Note that a pp-formula with m free variables defines am-ary relation
R C D™; the relationR is the set of all tuples satisfying the formugalt follows, for
example from the proof of [13, Lemma 4], that there is a poiyia time reduction
from Max SoL(I" U {R}) to MAX SoL(I").

For any relationk and a unary operatiof, let f(R) denote the relatiorf (R) =
{f(r)|r € R}. Accordingly, letf (") denote the constraintlanguaf&R) | R € I'}.

Definition 1. A constraint languagd” is a max-core if and only if there is no non-
injective unary operatiorf in Pol(I") such thatf(d) > d for all d € D. A constraint
languagel ™ is a max-core of " if and only if I is a max-core and” = f(I") for some
unary operationf € Pol(I") such thatf(d) > dforall d € D.

We refer to [13] for the proof of the following lemma.

Lemma 1. If I is a max-core of ', thenMAXx SoL(I") andMAXx SoL(I") are poly-
nomial time equivalent.

3.2 Basiclemmas

We now present a series of lemmas which will prove useful & ¢bming section.
Several of the lemmas are, however, interesting in their gt and can be applied to
a wider class of problems. Lét denote a constraint language over= {dy, ..., d;}.



Lemma 2. Arbitrarily chooseD’ C D, assume without loss of generality that =
{di,...;di} withdy < ds < ... < dyandletF = {f € Poly(I')| f|pr = idp-}.
Assume that there exists constamts. . . , a; > 0 such that for every € Poly(I")\ F it
holds thaty"!_, a;-d; > S\, a;- f(di). ThenMax SoL(I'U{{(d1)}, ..., {(d)}})
andMAx SoL(I") are polynomial time equivalent problems.

Proof. The non-trivial reduction follows from a construction whiases the concept of
anindicator problem[11].

Corollary 1. Let " be an arbitrary constraint language and lEtbe a unary relation
onD. If Max SoL(I") andMAXx SoL(I"U{U}) are polynomial time equivalent prob-
lems, then so arMax SoL (") andMAx SoL(I"U{{(maxU)}}). In particular, MAX
SoL(I") andMAx SoL(I" U {(dx)}) are polynomial time equivalent.

Proof. Use Lemma 2 od" U {U}, k =1,d; = m anda; > 0.

Lemma 3. Let I" be a constraint language on a finite domdin Assume that there is
a setF" C Poly(I'), such that for eaclf € F, Max SoL(f(I")) is in PO and such
that for each choice of;,...,a; € QT there is af € F for which Z‘f:l a; - d; <
Zle a; - f(d;). ThenMax SoL(I") is in PO.

LetH = {H,,...,H,} be a set of connected graphs and Etbe the disjoint
union of these graphs. We are interested in the complexii@% SoL(H), given the
complexities of the individual problems. Let; = H \ {H;}. We say thatd; extends
the setH; if there exists an instanck = (V, D, C,w) of MAX SoL(H;) for which
opPT(I) > oPT(l;) wherel; = (V,D;,{zH;y | zH;y € C},w), for all j such that
1 <j # i <n.We calll awitnesgo the extension.

Assume that for somé < i < n, it holds thatH; does not extend;. It is
clear that for any connected instante= (V, D, C,w) of MAX SoL(H), we have
oPT(I) = oPT(l;) for somej, wherel; = (V,D;,{zH;y | xHy € C},w). Fur-
thermore, sinced; does not extend<;, we know that we can choose thjs# 1.
Let H' be the disjoint union of the graphs #;. Then,opT(I) = opPT(I’), where
I'=(V,D,{zH'y | tHy € C},w) is an instance of MX SoL(H"). For this reason,
we may assume that eveH;, € H extends every graph iH;.

Lemma 4. Let Hy,..., H, be connected graphs andl their disjoint union. If the
problemsMAx SoL(H;), 1 < i < n are all tractable, therMAx SoL(H) is tractable.
If MAX SOL(H;) is NP-hard and H; extends the setH, ..., H;—1, Hi11,..., H,}

for somei, thenMAaXx SoL(H) is NP-hard.

The nextlemma can be shown by a reduction from¥#WuM INDEPENDENTSET.

Lemmabs. If a < bandR = {(a,a), (a,b), (b,a)}, thenMAX SoL(R) is NP-hard.

4 Results forMAX SoL

Throughout this section, we will assume that all graphs deficonstraint languages
are max-cores and connected. Due to Lemma 1 and Lemma 4, waodais without



loss of generality. There is a straightforward reductiamfrMAax SoL to MIN HOM,
so polynomiality results for M Hom translates directly to Mx SoL. Additionally,
the following reduction can sometimes be used to show hasdne

Lemma 6. Let H be a graph for which the retraction problemMP-complete. Then
MAxX SoL(H U {{(d1)},...,{(dk)}}) is NP-hard.

4.1 Irreflexive graphs with deg(v) < 2

There are two types of irreflexive graphswith deg(v) < 2 for all v € V(H), paths
and cycles. Since irreflexive paths are proper intervaldpbs, a reduction to M
Howm, and [5, Corollary 2.6] shows that:

Proposition 1. Let H be an irreflexive path. TheMAx SoL(H) is in PO.

When H is an odd cycle, we have thats§ H) is NP-complete and therefore
MAx SoL(H) is NP-hard. It remains to investigate even cycles. Since we dahot
low multiple edges( is a single edge, for which WX SoL is trivially in PO. When
H = C, = K»,, there is always an increasing endomorphism fadnto one of its
edges. Thus no max-core is isomorphicg. For even cycles of length greater or
equal to 6, it has been shown in [4] that the retraction probgNP-complete. We will
use this with Lemma 6 to prove thdP-hard cases. The tractable cases are proven by
Lemma 3. We will assume a bipartitidi(H) = {d1,...,dp} U{d},....d;} of H
with d; < dy < --- < dj andd] < d; < --- < dj, and without loss of generality that
dy > d;c.

d} ds d; dy

Fig. 1. The graphH in Proposition 3.

Proposition 2. Let H be isomorphic ta’s and a max-core. ThetMAX SoOL(H) is
NP-hard.

Proposition 3. Let H be isomorphic ta’s and a max-core. If{ is isomorphic to the
graph in Figure 1 anddy — ds)(d) — d5) > (ds — d2)(d5 — db), thenMAX SOL(H)
is in PO. Otherwise it iNP-hard.

In general, for even cycles, the following holds:



Proposition 4. Let H be a max-core isomorphic 5, k¥ > 3. ThenMAX SOL(H)
andMAx SoL(H U {{(dk)},{(d})}}) are polynomial time equivalent problems.

Assume that there exists non-negative constants..,a,—1,4a},...,a)_; such
that for eachf € Poli(H) \ F, whereF' = {f € Poli(I")|3j # k : f(d;) #
dj vV f(dy) # d}, itis true that

k—1 k-1
(as-di + i - df) > Y (as- f(d) +al - F(d)). )
i=1 =1

ThenMAXx SoL(H) is NP-hard, otherwise it is ifPO.

4.2 Small Graphs

In this section we determine the complexity ofaM SoL(H) for all graphsH =
(V, E) on at most4 vertices, i.e.|V(H)| < 4. For|V(H)| = 4 we only consider
the case wher® = {0, 1,2, 3}, but for |V (H)| < 3 we classify the complexity for
all V(H) C N. In the process we discover a new tractable class for thg BoL(H)
problem which is closely related to the critical indepertdst problem [1, 17].

We know from Lemma 1 that it is sufficient to consider graghghat are max-
cores. The casg/(H)| = 1 is trivial since there are only two such graphs and both
are tractable. FofV/(H)| = 2 there are two graphs that are max-cores, namely, the
irreflexive path on two vertices (RO by Proposition 1) and the graph &= {d;, d2 },
dy < do whered; is adjacent tal; andd; is looped (which isNP-hard by Lemma 5).

When|V (H)| = 3 we have the following classification.

Theorem 1. There are six (types of) max-cores oydi, da, ds} whered; < ds < ds,
denotedH, ..., Hg and shown in Figure 2Ax SoL(H) is NP-hard for all of these
exceptds. MAX SOL(Hs) isin POIf ds + di < 2ds andNP-hard otherwise.

dy
o o o s o o &
d1 d3 d2 d3 d2 dl
da
H; H> Hjs
di
o o & o o & s
d3 d1 d2 d3 dl d2
d2
Hy Hs Hg

Fig. 2. The graphd;.



The Max SoL(Hs) problem is related to the critical independent set problgm [
17]in the following way. An independent sét C V(G) is called critical if

lIc| — |N(I¢)| = max{|I| — [N(I)| | I is an independent set @},

whereN (I) denote the neighborhood 6fi.e., the set of vertices i@ that are adjacent
to at least one vertex ih. Zhang [17] proved that critical independent sets can bedou
in polynomial time.

We extend the notion of a critical independent setgiton )-critical independent
sets. A(k, m)-critical independent set is an independentiget V(&) such that

k-|Ic| —m-|N(I¢)| = max{k- |I| —m-|N(I)| | I is anindependent set {#}.

Note that the maximum independent set problem is exactlyptbblem of finding a
(1, 0)-critical independent set. The following proposition stsdhat that Max SOL(H)
is polynomial-time equivalent to th@s — ds, d2 — dy )-critical independent set problem.

Proposition 5. I¢ is a(ds — dz2, d2 — dy )-critical independent set it if and only if the
homomorphism from G to Hs, defined bys = (d3) = Ic andh~1(dy) = Nbd(Ic) is
an optimal solution foMAX SOL(H).

Proof. Assume thaf¢ is a(ds — da, d2 — dy)-critical independent set i@ buth is not
an optimal solution to MX SoL(Hs), i.e., there exists a homomorphignfrom G to
Hs such thatn(g) > m(h). Thatis,

w(g™(ds)) - ds +w(g~ " (dv)) - di +w(g~ " (do)) - do >

w(h™(ds)) - ds +w(h™(d1)) - di + w(h ™' (d2)) - da.
Subtractingw(V (G)) - d2 from both sides, we get

w(g ' (ds)) - (ds — do) — w(g™(d1)) - (dz — dn) >

w(h™!(dg)) - (ds — d2) —w(h™"(dy)) - (d2 — dy).

This contradicts the fact thdt is a(ds — da, d2 — dy)-critical independent set. The
proof in the other direction is similar. a

Building upon the results in [1], we are able to completelssify the complexity of
the (k, m)-critical independent set problem and, hence, also the ity of MAX
SOL(H5). More specifically, we prove that thé, m)-critical independent set problem
isin POIif £ < m and that it isNP-hard ifk > m.

Finally, we present the complexity classification ok SoL for all graphsH =
(V, E) whereV = {0,1,2,3}. Just as in the case whdié(H)| < 3 we make heavy
use of the fact that only graphs that are max-cores need tagsfeed. Our second tool
is the following lemma, stating that we can assume that we hagess to all constants.

Lemma 7. Let H be a max-core ovef0, 1,2, 3}. ThenMAx SoL(H) is in PO (NP-
hard) if and only iftMAax SoL(H U {{(0)},{(1)},{(2)},{(3)}}) is in PO (NP-hard).



As an immediate corollary, we get thatd¥ SoL(H ) is NP-hard for all max-cores
H onD = {0,1,2,3} when the retraction problem R (H)) is NP-complete. Note
that the complexity of the retraction problem for all grajpimsat mostt vertices have
been classified in [16]. The classification is completed bysttering the remaining
max-cores (for which RT(H) is in P) one by one. Our result is the following.

Theorem 2. Let H be a max-core oD = {0,1,2,3}. Then,MAX SOL(H) is in PO
if H is an irreflexive path, and otherwisklAx SoL(H) is NP-hard.

5 Results forLisT MAX AW SoL

The main theorem of this section is stated as follows.

Theorem 3. Let H be an undirected graph with loops allowed. THeisT MAX AW
SoL(H) is solvable in polynomial time if all components Af are proper interval
graphs or proper interval bigraphs. OtherwidelsT MAXx AW SoL(H) is NP-hard.

Corollary 2. Let H be an undirected graph with loops allowed. ThersT MAX AW
SoL(H) is polynomial time equivalent tdlIN HOM(H ).

The reduction from LST MAX AW SoL(H) is easy. The lists are replaced by weights
of oo for the appropriate variable-value pairs. Remaining wesigine negated and trans-
lated so that the smallest weight becomes 0 fok MloM. The rest of this section is
devoted to proving the other direction. We assume that thetiimstance is connected.
If it is not, then we can solve each component separately dddre solutions.

Lemma 8. Let H be an undirected graph. Theh|sT Max AW SoL(H) is NP-hard
if there exists a connected componéfitof H such thatL1ST MAX AW SoL(H') is
NP-hard. Otherwise, if for each connected componiéhof H we have thak 1IST MAX
AW SoL(H') is in PO, thenL1ST MAX AW SoL(H) is in PO.

Lemma 9. Let H be an undirected graph in which there exists both loop-fextices
and vertices with loops. ThehjsT MAx AW SoL(H) is NP-hard.

Proof. This is proved by reduction from MXiIMUM INDEPENDENTSET.

Proposition 6. If H is a connected graph which is a proper interval graph or a @op
interval bigraph, therL1ST MAX AW SoL(H) is polynomial time solvable.

Proof. This follows from [5, Corollary 2.6] which states that ther@sponding MN
HoMm(H )-problem is polynomial time solvable. O

Theorem 4 (P. Hell, J. Huang [8]).A bipartite graphH is a proper interval bigraph
if and only if it does not contain an induced cycle of lengtheast six, or a bipartite
claw, or a bipartite net, or a bipartite tent.

Figure 3 displays the bipartite net and bipartite tent gsaph

Lemma 10. Let H be a cycle of length at least six. ThemsT MAX AW SoOL(H) is
NP-hard.



X1 T3
1

(a) (b) (©)

Fig. 3. (a) reflexive claw,(b) bipartite net,(c) bipartite tent.

Proof. The proof is by a simple reduction from the retraction prablen H. This
problem is shown to bBIP-complete in [4]. a

Lemma 11. Let H be one of the graphs shown in Figure 3. ThHersT MAX AW
SOL(H) is NP-hard.

Proof. The proof follows the same ideas as those in [5]. That is, edaages from the
problem of finding a maximum independent set in a 3-partislgr The apparent lack
of expressive power of theleT MAX AW SoL-framework, and the dependence on the
labels of the target graph, are resolved by a precise chbigeights in the constructed
instances. We carry out the case in Figufe)3n detail.

Let G be a 3-partite graph with partite sel§ Y and Z. We create an instance
I = (V,D,C, L,w) of LiIST MAX AW SoL(H) as follows. LetV = V(G), D =
V(H) = {z1, 22,73, 74} and create a constraint{v in C for each(u,v) € E(G).
Now, define the lists and weights as follows.

{x4,21} whenu e X
L(u) = ¢ {z4,22} whenueY
{z4,23} whenu € Z.

1/(x1 —24) whenu e X
w(u) =< 1/(xa —x4) whenueY
1/(x3 —x4) whenu e Z.

Now, if s is a solution td/, let X; = s~1(x1), Xo = X\ X; and define similarlyy,
Y1 andZ,, Z,. Note thats defines an independent s€t U Y; U Z; of GG. Conversely,
it is also clear that any independent sett®f/ields a solution ta/ by assigning each
variable tox, precisely when it is not a part of the independent set. Thaevafs can
be written as

D s(u)wlu) =Y s(a) - wl@) + Y s(y)-wly) + Y s(z) - wiz) =

ueV zeX yey 2€Z

| Xo| - w4 + [ Xa] - 21 Jr|Y0|'~”U4+|Y1|'~”52Jr|ZO|'5U4+|Zl|'ﬂ% _
xr1 — T4 To — T4 €T3 — T4




Y]

X|-x
Xt — Y+
4

ARR"
Vrza g = v X0 + | + |2,
Xr1 — X4 Xro — —

I3 T4
whereM is independent of and can be calculated in polynomial time frdmThus,
an optimal solution td gives a maximal independent setGh O

We now have all the tools necessary to complete the proof ebfidm 3.

Proof of Theorem 3According to Lemma 8 we can assume th&ais connected. Fur-
thermore, due to Lemma 9 we can assume fiids either loop-free or reflexive, or
LisT MAX AW SoL(H) is NP-hard. Proposition 6 gives the polynomial cases.

If H is loop-free and non-bipartite, we can reduce fromM{H ), which is NP-
complete for non-bipartite graphs. So assume fhas bipartite. If H is not a proper
interval bigraph, then, due to Theorem#, has either an induced cycle of length at
least 6, an induced bipartite claw, an induced bipartiteonetn induced bipartite tent.
We can use the list§ to induce each of these graphs,$B-hardness follows from
Lemma 10 and 11. Note that hardness for the reflexive clawiésplardness for the
bipartite claw.

Finally, if H is reflexive, then it is either not an interval graph, or a poaper
interval graph. IfH is not an interval graph, then we can reduce from the list hnore
phism problem L-HOM{ which is shown to b&P-complete for reflexive, non-interval
graphs in [3]. In the second case, it has been shown by Rdiditthat H must con-
tain an induced claw. Lemma 11 shows that this probleNRshard, which finishes the
proof. a

6 Discussion and future work

In this paper we have initiated a study of the complexity & thaximum solution
problem on graphs. Our results indicate that giving a coteglemplexity classification
of MAx SoL(H) for every fixed graptf is probably harder than first anticipated. In
particular, the new tractable class for thexk SoL problem identified in Section 4.2
depends very subtly on the values of the domain elements am@dwve not yet been able
to characterize this tractable class in terms of polymapisi Hence, this tractable class
seems to be of a very different flavour compared to the prelyadentified tractable
classes for the Mx SoL problem [13].

On the other hand, we are able to give a complete classificédiothe complex-
ity of the arbitrary weighted list version of the problemisic MAX AW SoL(H).
Interestingly, the borderline between tractability aig-hardness for LsST MAX AW
SoL(H) coincide exactly with Gutin et al.’s [5] recent complexitgssification of MN
Hom(H). This is surprising, since the M HoMm(H) problem is much more expressive
than the LST MAX AW SoL(H) problem, and hence, we were expecting grafihs
such that MN Hom(H) wereNP-hard and LsT MAX AW SoL(H) were inPO. The
obvious question raised by this result is how far can we ektba agreement in com-
plexity between LsT MAXx AW SoL(I") and MIN HOM(I")? To this end, we state the
MIN Hom problem for general constraint languages.

Minimum Cost Homomorphisaver constraint language, denoted MN HOM(I"),
is the minimization problem with



Instance: Tuple (V, D, C, ¢;(v)), whereD is a finite subset oN, (V, D, C) is a CsP
instance over’, ¢; : V. — QT are costs foi € V(H).

Solution: An assignmentf : V — D to the variables such that all constraints are
satisfied.

Measure: 3 .\ cr)(v)

Problem 1.Is it the case that the complexity ofitT MAX AW SoL(I") and MIN
Howm(I") are equal for all constraint languages

It can be shown, using results from [2, 12], thasL MAXx AW SoL(I") and MIN
Howm(I") are polynomial time equivalent whdnis a boolean constraint language.
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