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Abstract

We study the complexity of the propositional minimal inference problem. Although the com-
plexity of this problem has been already extensively studied before because of its fundamental
importance in nonmonotonic logics and commonsense reasoning, no complete classification of
its complexity was found. We classify the complexity of four different and well-studied formal-
izations of the problem in the version with unbounded queries, proving that the complexity of
the minimal inference problem for each of them has a trichotomy (between P, coNP-complete,
and Π2P-complete). One of these results finally settles with a positive answer the trichotomy
conjecture of Kirousis and Kolaitis [A dichotomy in the complexity of propositional circumscrip-
tion, LICS’01]. In the process we also strengthen and give a much simplified proof of the main
result from [Durand and Hermann, The inference problem for propositional circumscription of
affine formulas is coNP-complete, STACS’03].

1 Introduction and Summary of Results

Reasoning with minimal models of a theory is a general idea widely used in artificial intelligence,
especially for capturing various aspects of common sense and nonmonotonic reasoning. In particu-
lar, it is the main idea behind circumscription [22,23], diagnosis [10], and logic programming under
stable model semantics [15]. The key idea behind minimal models reasoning, and in particular
circumscription, is that the minimal models have as few “exceptions” as possible, and embody
therefore common sense. Minimal inference has been shown by Gelfond et al. [16] to coincide with
reasoning under the extended closed world assumption, which is one of the main formalisms for
reasoning with incomplete information. We focus in this paper on the important basic case where
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the theory is propositional, which is also the most investigated case from a complexity point of
view. In this case, the minimality of models is defined with respect to the pointwise partial order,
extending the order 0 < 1 on truth values.

The complexity of several basic algorithmic problems have been studied in connection with
minimal models of propositional formulas: among them are the model selection [7,28], model check-
ing [5, 20], and inference [6, 11, 13, 21, 37] problems. Given a propositional formula ϕ, the minimal
model selection problem requires to compute a minimal model of ϕ. Similarly, given a propositional
formula ϕ and a truth assignment m, the minimal model checking problem asks whether m is a
minimal model of ϕ. Given two propositional formulas ϕ and ψ, the minimal inference problem asks
whether ψ is true in every minimal model of ϕ. In propositional theories these problems are iden-
tical to the corresponding problems for propositional circumscription. Hence, they are often called
the model selection, model checking, and inference problems for propositional circumscription, re-
spectively. In this paper we focus exclusively on the minimal inference problem (or equivalently
the inference problem for propositional circumscription). We remark that there is also a parallel
line of research that studies the complexity of circumscription for a different type of propositional
formulas (i.e., so called Post formulas [37,38]).

McCarthy [23] and Gelfond, Przymusinska, and Przymusinski [16] extended the notion of cir-
cumscription to a more general setting. They altered the notion of minimal models of a formula ϕ
by dividing the set of variables V of ϕ into three disjoint sets, namely of the variables P that are
minimized, the variables Z that may vary, and the variables Q that maintain a fixed value. Given
two models m and m′ of ϕ, the relation m ≤ m′ holds if m(x) ≤ m′(x) is satisfied for all x ∈ P
and the equality m(y) = m′(y) holds for all y ∈ Q. A model m′ of ϕ is defined to be a minimal
model if there is no model m of ϕ satisfying m ≤ m′ and m(x) < m′(x) for a variable x ∈ P .

The generalized minimal inference problem with the extended notion of minimal models is called
(P,Z,Q)-minimal inference. It should be clear that the original minimal inference problem is the
special cases of the corresponding generalized problem satisfying the condition Z = Q = ∅. Cadoli
and Lenzerini analyzed in [6] the complexity of (P,Z,Q)-minimal inference, as well as the variants
with no fixed variables (i.e., (P,Z, ∅)-minimal inference), with no free variables (i.e., (P, ∅, Q)-
minimal inference), and where all variables must be minimized (i.e., (P, ∅, ∅)-minimal inference).
In fact, they analyzed the complexity of reasoning under several variants of closed world assumptions
and their results propagate to minimal inference through the equivalence presented by Gelfond et
al. in [16].

The topic of this paper is to classify the complexity of the minimal inference problem for the
four restrictions on the variable sets Q and Z mentioned above, as well as all restrictions on the
types of clauses allowed in the theory ϕ, presented by a formula in conjunctive normal form. Note
that the corresponding classification problem for satisfiability was solved in a seminal paper by
Schaefer [35].

The most studied variant of the minimal inference problem and also the most difficult variant
to analyse is the classical one where we require all variables to be minimized, i.e., with Z = ∅
and Q = ∅. This inference problem was proved Π2P-complete by Eiter and Gottlob in [13] if no
restrictions are imposed on the propositional theory ϕ. Cadoli and Lenzerini proved in [6] that the
inference problem becomes coNP-complete if ϕ is a bijunctive or a dual Horn formula. Durand and
Hermann proved in [11] that also the inference problem for affine formulas ϕ is coNP-complete.
Finally, Kirousis and Kolaitis [21] proved a dichotomy theorem separating the Π2P-complete cases
from the cases in coNP. Moreover, they conjectured that the cases in coNP could be separated into
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coNP-complete cases and tractable (i.e., polynomial-time decidable) cases.
The proof of the dichotomy theorem for the minimal inference problem by Kirousis and Ko-

laitis [21] turned out to be difficult for several reasons. One of them was the impossibility to
apply the well-known approach through the theory of clones and Post’s lattice [3, 17, 32] to obtain
a complexity classification. The culprit is the existential quantification which does not combine
well with minimality. This implies that the co-clones, which are the sets of relations closed under
variable identification, variable permutation, conjunction, and existential quantification, are not
invariant with respect to the complexity of minimal inference. This situation precludes the use of
the Galois correspondence, which allows first to prove a completeness result for a subset of relations
and subsequently to extend it to the whole co-clone.

However, if the pointwise partial order on models is relaxed, which is the consequence of studying
the generalized minimal inference problems where some variables are allowed to vary, then it has
been observed that the Galois correspondence can be restored [25] and the approach via clone theory
works. With the help of these powerful tools it is relatively easy to classify the complexity of these
generalized forms of minimal inference for every restriction on the types of allowed clauses in the
theory (what we do in Sections 5 and 6). We note in passing that the recent results by Schnoor
and Schnoor [36] offer an alternative way of making the approach via clone theory applicable to
these problems.

As already mentioned, following the results of Kirousis and Kolaitis [21], it is clear that we
cannot use the powerful algebraic approach for attacking the complexity of the minimal inference
problem. Our approach is instead based on refinements of Schaefer’s approach (via a particular
type of implementations) to classify the complexity of the satisfiability problem in propositional
logic (see [8, 35]). There is one significant difference though between Schaefer’s implementations
and ours. We can only use conjunction, variable identification, and variable permutation (without
existential quantifiers) in our implementations. This is due to the fact, as already explained, that
existential quantification does not preserve the minimal models, nor the complexity of the problem.
Nevertheless, we manage to separate the coNP-hard cases from the tractable ones by using this
approach through a more fine-grained analysis, thus, finishing the complexity classification for all
four variants of minimal inference with all possible restrictions on the types of allowed clauses,
establishing trichotomy theorems for all considered variants of the minimal inference problem in
Schaefer’s framework. Note that we address the minimal inference problem for unbounded queries.
Some remarks on the bounded case can be found in the conclusion.

Our paper finally settles with a positive answer the trichotomy conjecture of Kirousis and Ko-
laitis [21] for the basic variant of minimal inference (with unbounded queries), which was also listed
as one of the open problems (Question 4.1) during the International Workshop on Mathematics
of Constraint Satisfaction held in Oxford in March 2006 [27]. In the process we also strengthen
and give a much simplified proof of the coNP-completeness result by Durand and Hermann [11].
We also believe that the implementations we present might be interesting in their own right, since
they could be useful during the study of other problems, which are not invariant under existential
quantification.

2 Preliminaries

Throughout the paper we use the standard correspondence between constraints and relations. We
use the same symbol for a constraint and its corresponding relation, since the meaning will always
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be clear from the context, and we say that the constraint generates the relation. Mathematically
speaking, a constraint or formula ϕ generates a relation R if the solution set of ϕ is equal to R.

An n-ary logical relation R is a Boolean relation of arity n. Each element of a logical relation R
is an n-ary Boolean vector (also called a tuple) m = (m1, . . . ,mn) ∈ {0, 1}n. To save space, we will
often write the vector (m1, . . . ,mn) in the form m1 · · ·mn. We also write m[i] for mi, denoting this
way the i-th coordinate of the Boolean vector m. Let V be a set of variables. A constraint is an
application of R to an n-tuple of variables from V , i.e., R(x1, . . . , xn).

Consider a relation R represented in the form of a Boolean matrix, i.e., the vectors of R con-
stitute the rows of the matrix. We say that a relation R is irredundant if it does not contain two
identical columns and it cannot be transformed by column permutation to a relation of the form
Q×{0, 1}k for a k ≥ 1, where Q is another relation. If R is redundant then the corresponding irre-
dundant reduction R◦ is formed by removing the {0, 1}k part from R = Q×{0, 1}k and identifying
identical columns. A set of relations S is irredundant if every relation in S is irredundant. Given
a set of relations S, we form the irredundant reduction S◦ by replacing all redundant relations R
in S by their corresponding irredundant reductions R◦.

Throughout the text we refer to different types of Boolean constraint relations following Schae-
fer’s terminology [35] (see also the monograph [8]). We say that a Boolean relation R is

• 1-valid if 1 · · · 1 ∈ R and it is 0-valid if 0 · · · 0 ∈ R,
• Horn (dual Horn) if R can be generated by a conjunctive normal form (CNF) formula having

at most one unnegated (negated) variable in each clause,
• bijunctive if it can be generated by a CNF formula having at most two variables in each

clause,
• affine if it can be generated by an affine system of equations S : Ax = b over Z2,
• bijunctive affine, sometimes also called width-2 affine, if it is both affine and bijunctive,
• complementive if for each (m1, . . . ,mn) ∈ R also (¬m1, . . . ,¬mn) ∈ R.

A set S of Boolean relations is called 0-valid (1-valid, Horn, dual Horn, affine, bijunctive, comple-
mentive) if every relation in S is 0-valid (1-valid, Horn, dual Horn, affine, bijunctive, complemen-
tive). A relation R (a set of relations S) is called Schaefer if it belongs to one of the classes Horn,
dual Horn, bijunctive, or affine.

Let R ⊆ {0, 1}k be a k-ary Boolean relation. We say that a relation R′ is a direct 0-section of R
if there exists an index i ∈ {1, . . . , k}, such that

R′ = {(m[1], . . . ,m[i− 1],m[i+ 1], . . . ,m[k]) | m ∈ R ∧m[i] = 0}.

In other words, R′ is a direct 0-section of R if R′ can be obtained from R by selecting all tuples in R
having a 0 in position i (for some 1 ≤ i ≤ k) and projecting onto the other k−1 columns/positions.
We say that a relation R′′ is a 0-section of R if there exists a finite sequence of Boolean relations
R0, R1, . . . , Rn, such that R0 = R, R′′ = Rn, and Rj+1 is a direct 0-section of Rj for each
j = 0, . . . , n− 1. Let S be a finite set of Boolean relations. We say that S∗ is a 1-valid restriction
of S if it contains all relations R∗ which are both 1-valid and a 0-section of a relation R from S.
Note that starting from an arbitrary relation R ∈ S, we always arrive at a 1-valid 0-section R∗ by
iterating the 0-section operation long enough, unless R = {0 · · · 0}. The aforementioned technique
is a well-known concept from coding theory and it was already used for circumscription [20] and
minimal inference [21]. Note that if S is Schaefer, then so is S∗. This is because the Schaefer classes
are stable under constant substitution. Also note that S is 0-valid if and only if S∗ is 0-valid.

An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x) to each variable
x ∈ V . If we arrange the variables in some arbitrary but fixed order, say as a vector (x1, . . . , xn),
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then the assignments can be identified with vectors from {0, 1}n. The i-th component of a vector m,
denoted by m[i], corresponds to the value of the i-th variable, i.e., m(xi) = m[i]. An assignment m
satisfies the constraint R(x1, . . . , xn) if (m(x1), . . . ,m(xn)) ∈ R holds. An assignment m satisfying
a constraint R is called a model of R.

Let S be a non-empty finite set of Boolean relations, also called a constraint language. An
S-formula is a finite conjunction of clauses ϕ = c1 ∧ · · · ∧ ck, where each clause ci is a constraint
application of some logical relation R ∈ S. An assignment m satisfies the formula ϕ if it satisfies all
clauses ci. Hence the notion of models naturally extends from constraints to formulas. We denote
by [ϕ] the set of models of a formula ϕ. It is clear that each [ϕ] denotes a Boolean relation. In this
case we also say that the formula (constraint) ϕ generates the relation [ϕ].

Let m = (m[1], . . . ,m[n]) and m′ = (m′[1], . . . ,m′[n]) be two Boolean vectors from {0, 1}n. We
write m ≤ m′ to denote that m[i] ≤ m′[i] holds for every i ≤ n, as well as m < m′ for m ≤ m′ and
m 6= m′. The relation ≤ is called the pointwise partial order on models. Suppose ϕ(x1, . . . , xn) is
a Boolean formula having x1, . . . , xn as its variables and let m ∈ {0, 1}n be a truth assignment.
We say that m is a minimal model of ϕ if m is a model of ϕ and there is no other model m′ of ϕ
that satisfies the relation m′ < m. Two vectors a, b ∈ R satisfying the relation a < b are called
comparable. We say that a relation R is incomparable if it does not contain comparable vectors.
We say that a set of relations S is incomparable if each relation R ∈ S is incomparable.

Let us partition the variables V into three disjoint sets P , Z, and Q, as it is usual in minimality
problems in artificial intelligence (see [6,16]), where P is the set of variables to be minimized, Z is
the set of variables allowed to vary (also called free variables), and Q is the set of variables that
must maintain a constant value (also called constants). We write m ≺ m′ to denote that the
Boolean vectors m and m′ satisfy the following conditions: (1) m(x) < m′(x) for all x ∈ P and
(2) m(x) = m′(x) for all variables x ∈ Q. We write m � m′ if the first condition is m ≤ m′. Note
that there is no condition on the values of variables in Z. We say that m is a (P,Z,Q)-minimal
or generalized minimal model of ϕ if m is a satisfying truth assignment of ϕ and there is no other
satisfying truth assignment m′ of ϕ that satisfies the relation m′ ≺ m. If the variable sets Z and Q
are empty, then we identify the (P, ∅, ∅)-minimal models with the aforementioned minimal models
of ϕ.

Let ϕ and ψ be two propositional formulas in conjunctive normal form. We say that ψ follows
from ϕ in propositional minimal inference, denoted by ϕ |=min ψ, if ψ is true in every minimal
model of ϕ. Since ψ is a conjunction c1 ∧ · · · ∧ ck of clauses ci, the minimal inference ϕ |=min ψ
holds if and only if the minimal inference ϕ |=min ci holds for each i. Hence we can restrict ourselves
to consider only a single clause instead of a formula ψ at the right-hand side of the propositional
inference problem ϕ |=min c. Similarly, we say that ψ follows from ϕ in (P,Z,Q)-minimal inference,
also denoted by ϕ |=Z,Q

min ψ, if ψ is true in every (P,Z,Q)-minimal model of ϕ. The superscripts Z

and Q are usually dropped from ϕ |=Z,Q
min ψ when their presence is clear from the context. Notice

that we do not impose any length bounds on the right-hand side clause c, also called the query,
in a minimal inference problem ϕ |=min C, hence we consider the minimal inference problem with
unbounded queries.

3 Clones, Co-Clones, and Post’s Lattice

The theory of clones and co-clones has previously shown to be very useful for characterizing the
complexity of problems with restrictions on the types of allowed constraints (see for instance the
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Clone Base(s) Co-clone Base(s)
BF {x ∧ y,¬x} iBF {eq2}
R0 {x ∧ y, x⊕ y} iR0 {¬x}
R1 {x ∨ y, x⊕ y ⊕ 1} iR1 {x}
R2 {x ∨ y, x ∧ (y ⊕ z ⊕ 1)} iR2 {¬x, x}
M {x ∧ y, x ∨ y, 0, 1} iM {x→ y}
M1 {x ∧ y, x ∨ y, 1} iM1 {x→ y, x}
M0 {x ∧ y, x ∨ y, 0} iM0 {x→ y,¬x}
M2 {x ∧ y, x ∨ y} iM2 {x→ y,¬x, x}
Sm

0
{x→ y,dual(hm)} iSm

0
{orm}

Sm

1
{x ∧ ¬y, hm} iSm

1
{nandm}

S0 {x→ y} iS0 {orm | m ≥ 2}
S1 {x ∧ ¬y} iS1 {nandm | m ≥ 2}
Sm

02
{x ∨ (y ∧ ¬z)} iSm

02
{orm,¬x, x}

S02 {x ∨ (y ∧ ¬z)} iS02 {orm | m ≥ 2} ∪ {¬x, x}
Sm

01
{dual(hm), 1} iSm

01
{orm, x→ y}

S01 {x ∨ (y ∧ z), 1} iS01 {orm | m ≥ 2} ∪ {x→ y}
Sm

00
{x ∨ (y ∧ z),dual(hm)} iSm

00
{orm, x→ y,¬x, x}

S00 {x ∨ (y ∧ z)} iS00 {orm | m ≥ 2} ∪ {¬x, x, x→ y}
Sm

12
{x ∧ (y ∨ ¬z),dual(hm)} iSm

12
{nandm,¬x, x}

S12 {x ∧ (y ∨ ¬z)} iS12 {nandm | m ≥ 2} ∪ {¬x, x}
Sm

11
{hm, 0} iSm

11
{nandm, x→ y}

S11 {x ∧ (y ∨ z), 0} iS11 {nandm | m ≥ 2} ∪ {x→ y}
Sm

10
{x ∧ (y ∨ z), hm} iSm

10
{nandm,¬x, x, x→ y}

S10 {x ∧ (y ∨ z)} iS10 {nandm | m ≥ 2} ∪ {¬x, x, x→ y}
D {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)} iD {x⊕ y}
D1 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)} iD1 {x⊕ y, x}
D2 {(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)} iD2 {x⊕ y, x→ y}
L {x⊕ y, 1} iL {even4}
L0 {x⊕ y} iL0 {even4,¬x}, {even3}
L1 {x ≡ y} iL1 {even4, x}, {odd3}
L2 {x⊕ y ⊕ z} iL2 {even4,¬x, x}
L3 {x⊕ y ⊕ z ⊕ 1} iL3 {even4, x⊕ y}
V {x ∨ y, 0, 1} iV {x ∨ y ∨ ¬z}
V0 {x ∨ y, 0} iV0 {x ∨ y ∨ ¬z,¬x}
V1 {x ∨ y, 1} iV1 {x ∨ y ∨ ¬z, x}
V2 {x ∨ y} iV2 {x ∨ y ∨ ¬z,¬x, x}
E {x ∧ y, 0, 1} iE {¬x ∨ ¬y ∨ z}
E0 {x ∧ y, 0} iE0 {¬x ∨ ¬y ∨ z,¬x}
E1 {x ∧ y, 1} iE1 {¬x ∨ ¬y ∨ z, x}
E2 {x ∧ y} iE2 {¬x ∨ ¬y ∨ z,¬x, x}
N {¬x, 0}, {¬x, 1} iN {dup3}
N2 {¬x} iN2 {nae3}
I {id, 0, 1} iI {even4, x→ y}
I0 {id, 0} iI0 {even4, x→ y,¬x}, {dup3, x→ y}
I1 {id, 1} iI1 {even4, x→ y, x}
I2 {id} BR {1-in-3}

Table 1: List of Boolean clones and co-clones with bases
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Functions hm =
∨m+1

i=1 x1 ∧ · · · ∧ xi−1 ∧ xx+1 ∧ · · · ∧ xm+1

dual(hm)(x1, . . . , xm+1) = ¬hm(¬x1, . . . ,¬xm+1)
(x⊕ y) = x+ y mod 2
(x ≡ y) = x+ y + 1 mod 2

id(x) = x

Relations orm = {(a1, . . . , am) ∈ {0, 1}m |
∑m

i=1 ai > 0}
nandm = {(a1, . . . , am) ∈ {0, 1}m |

∑m
i=1 ai 6= m}

evenm = {(a1, . . . , am) ∈ {0, 1}m |
∑m

i=1 ai is even}
oddm = {(a1, . . . , am) ∈ {0, 1}m |

∑m
i=1 ai is odd}

dup3 = {0, 1}3 r {010, 101}
nae3 = {0, 1}3 r {000, 111}
eq2 = {00, 11}

1-in-3 = {001, 010, 100}

Table 2: List of Boolean functions and relations

survey [2,3]). The underlying theory, a part of universal algebra, can be found in the monograph [31]
or in Chapter 1 of the book [29]. Also helpful is the survey paper [30].

The theory of Boolean clones studies the closure properties of Boolean relations with respect
to Boolean functions. The notion of closure property of a Boolean relation has been defined in a
general way. Let f : {0, 1}k → {0, 1} be a Boolean function of arity k. We say that R is closed
under f , or that f is a polymorphism of R, if for any choice of k vectors m1, . . . ,mk ∈ R, we have
that

(

f
(

m1[1], . . . ,mk[1]
)

, f
(

m1[2], . . . ,mk[2]
)

, . . . , f
(

m1[n], . . . ,mk[n]
)

)

∈ R,

i.e., that the new vector constructed coordinate-wise from m1, . . . , mk by means of f belongs to R.
We denote by Pol(R) the set of all polymorphisms of R and by Pol(S) the set of Boolean

functions that are polymorphisms of every relation in S. It turns out that Pol(S) is a closed set
of Boolean functions, also called a clone, for every set of relations S. A clone is a set of functions
containing all projections and closed under composition. In particular, the set of all function [F ]
constructed from a given set of functions F by means of composition and projection, forms a clone.

If a relation R is closed under a function f , we say that R is invariant under f . We denote
by Inv(F ) the set of relations invariant under the functions F . In other words, for each relation
R ∈ Inv(F ) and each Boolean function f ∈ F we have that f is a polymorphism of R. It turns out
that Inv(F ) is a closed set of Boolean relations, also called a co-clone, for every set of functions F .
Given a set of functions F we denote the corresponding co-clone Inv(F ) by iF .

We denote by 〈S〉 the co-clone generated by the set of relations S, also called the co-clone
closure of S, i.e., the smallest set containing S and the binary equality relation eq2, and that are
closed under Cartesian product, permutation, restriction, and projection. The co-clone 〈S〉 can also
be understood as the set of all models of formulas built from constraints over S, and closed under
conjunction, variable permutation, variable identification, and existential quantification. Keeping
in mind that [ϕ] is the set of model of ϕ, this means that 〈S〉 can be defined inductively as follows:
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R is Horn ⇔ m,m′ ∈ R implies m ∧m′ ∈ R
R is dual Horn ⇔ m,m′ ∈ R implies m ∨m′ ∈ R
R is bijunctive ⇔ m,m′,m′′ ∈ R implies maj(m,m′,m′′) ∈ R
R is affine ⇔ m,m′,m′′ ∈ R implies m+m′ +m′′ ∈ R
R is complementive ⇔ m ∈ R implies ¬m ∈ R

Table 3: Correspondence with closure operations

1. S ⊆ 〈S〉 and eq2 ∈ 〈S〉,
2. if R1, R2 ∈ 〈S〉 then R1 ×R2 = [R1(~x) ∧R2(~y)] ∈ 〈S〉, (Cartesian product or conjunction)
3. if [R(~x, u, ~y, v, ~y)] ∈ 〈S〉 then [R(~x, v, ~y, u, ~y)] ∈ 〈S〉, (permutation)
4. if R(x1, x2, ~y) ∈ 〈S〉 then [R(x, x, ~y)] ∈ 〈S〉, where x is a fresh variable, (restriction)
5. if [R(x, ~y)] ∈ 〈S〉 then [∃xR(x, ~y)] ∈ 〈S〉. (projection or existential quantification)

We will also require a weaker closure than 〈S〉, called weak co-clone closure and denoted by 〈S〉∄,
where the set is closed under the first four operations, but not under projection (existential quan-
tification) depicted in Condition 5. Note that this new closure notion has been studied before
in [14,26,34,36]. The idempotent closure Sid of a set of relations S corresponds to S∪{ {0}, {1} },
which can be also written as S ∪ {[x], [¬x]}.

A Galois correspondence has been exhibited between the sets of Boolean functions Pol(S) and
the sets of Boolean relations S, as well as between the functions F and the relations Inv(F ). The
Galois correspondence encompasses the following implications. Let F1 and F2 be two sets of Boolean
functions, as well as S1 and S2 two sets of Boolean relations. The inclusion [F1] ⊆ [F2] implies
Inv(F1) ⊇ Inv(F2) and the inclusion 〈S1〉 ⊆ 〈S2〉 implies Pol(S1) ⊇ Pol(S2). In particular, this
Galois correspondence enables the proof of the identities Pol(Inv(F )) = [F ] and Inv(Pol(S)) = 〈S〉
for every set of functions F and each set of relations S. Moreover, it helps to easily establish
complexity results for problems compatible with co-clones.

All clones of Boolean functions were identified by Post in [32]. Post also detected the inclusion
structure of these clones, what is now referred to as Post’s lattice (see Figure 1), as well as the
property of each Boolean clone to have a finite basis, a smallest finite set of Boolean functions F
identifying the clone [F ]. The list of all clones and co-clones, together with their bases, according
to Böhler et al. [2–4], can be found in Table 1, with the used functions and relations presented in
Table 2. In the last column of Table 1 we often write only the constraints ϕ instead of the generated
relation [ϕ].

In the sequel we need to determine the properties of relations. This will be done by means of
closure operations of the corresponding clones. In particular, we study the closure under the Boolean
functions called conjunction (∧), disjunction (∨), majority (maj), addition over the Boolean ring Z2

called exclusive-or (+), and negation (¬), where the majority operation is equivalent to the identity
maj(m,m′,m′′) = (m ∨m′)∧ (m′ ∨m′′)∧ (m′′ ∨m). These operations are applied componentwise.
The correspondence between the type of relation and the closure operation is specified in Table 3.

4 Generalized Minimal Inference and Extension

We are interested in the complexity of the following problem, which is a generalization of the
minimal inference problem studied in [13, 21]. See, e.g., the paper [19] for an overview of existing
complexity results for corresponding circumscription and minimal inference problems.
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Problem: gmininf(S)
Input: A set of variables V divided into three disjoint sets P , Z, and Q, an S-formula ϕ over the
variables V , and a clause ψ.
Question: Is ψ satisfiable in every (P,Z,Q)-minimal model of ϕ, i.e., does ϕ |=min ψ hold?

According to the emptiness of the sets Z and Q, there exist four variants of the generalized
minimal inference problem, namely

gmininf if Z and Q are unrestricted, vmininf if Q = ∅,
cmininf if Z = ∅, mininf if Z = Q = ∅.

We will call vmininf the minimal inference with free variables and cmininf the minimal inference
with constants. mininf is the classical inference problem where all variables are minimized, as it
was considered in [13,21].

For the non-parametrized case, when we consider the class of formulas as a whole and not
produced from a given set of relations S, the following results have been previously proved. Eiter
and Gottlob proved in [13] that mininf is Π2P-complete. Cadoli and Lenzerini [6] showed that the
mininf problem for dual Horn or bijunctive formulas ϕ is coNP-complete. Durand and Hermann [11]
showed that the mininf problem for affine formula ϕ is coNP-complete. For the parametrized case
Kirousis and Kolaitis [21] showed that there exists a dichotomy between the Π2P-complete case of
mininf(S) for a whole set of relations S and the special cases of S for which mininf(S) included in
coNP. The mininf(S) problem for a set of Horn relations S is trivially known to be polynomial-time
decidable, since a Horn formula has at most one minimal model, depending on its satisfiability.

When dealing with the gmininf(S) problem and its complexity we sometimes need to speak
about the complexity of infinite sets of relations S. Note that we are interested only in the com-
plexity of gmininf(S) for finite sets of relations S, but we will need these notions when we speak
about the problem gmininf(〈S〉) since 〈S〉 is in general an infinite set of relations. We say that
gmininf(S) is decidable in polynomial time for an infinite set S if for each finite set of relations
S′ ⊆ S the problem gmininf(S′) is decidable in polynomial time. We say that gmininf(S) is
coNP-complete if there exists a finite subset S′ ⊆ S, such that gmininf(S′) is coNP-complete
and for each finite subset S′′ ⊆ S it is the case that gmininf(S′′) is in coNP. Finally, we say
that gmininf(S) is Π2P-complete if there exists a finite subset S′ ⊆ S, such that gmininf(S′) is
Π2P-complete and for each finite subset S′′ ⊆ S it is the case that gmininf(S′′) is in Π2P.

It should be clear that membership results propagate from more general to more restrictive
variants of the minimal inference problem. In the same spirit, hardness results propagate from more
restrictive to more general variants of minimal inference. Hence, a polynomial-time decidability of
gmininf also holds for vmininf, cmininf, and mininf, whereas a hardness result for mininf also
holds for the other three variants.

Nordh and Jonsson [25] observed that the Galois correspondence exists for the gmininf problem,
what allowed them to prove the following results. The proof in [25] is done only for gmininf, but the
same technique carries over also to vmininf, since the proof is based on a construction concerning
variables only.

Proposition 4.1 (Nordh & Jonsson [25]) If 〈S1〉 ⊆ 〈S2〉 then gmininf(S1) ≤p
m gmininf(S2)

and vmininf(S1) ≤
p
m vmininf(S2).

Theorem 4.2 (Nordh & Jonsson [25]) The problems gmininf(S) and gmininf(〈S〉) are poly-
nomially equivalent for a set of Boolean relations S. The same result holds for vmininf.
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As Nordh and Jonsson showed, the proof of this theorem is made possible because the existentially
quantified variables xp+1, . . . , xq of a constructed relation

R(x1, . . . , xp) = ∃xp+1 · · · ∃xq R1(x1, . . . , xq) ∧ · · · ∧Rr(x1, . . . , xq)

from a given set of relations S = {R1, . . . , Rr}, can be added to the set of varying variables Z. Hence,
the generalized minimal inference problem for a given set of relations S and its co-clone closure 〈S〉
has the same complexity. This result remains true also for the vmininf problem. However, there
is no known way to derive an equivalent to Theorem 4.2 for the cmininf and mininf problems,
mainly because existentially quantified variables cannot be handled in the appropriate way and
therefore the universal algebra approach cannot be directly applied. We remark that one possible
way to deal with this is to work with so called partial algebras instead [26,36].

Sometimes it is convenient to consider the idempotent closure Sid instead of the original set of
relations S. However, with respect to the problems gmininf and cmininf there is no difference
between S and Sid from the complexity point of view, as it was observed by Nordh and Jonsson [25].

Theorem 4.3 (Nordh & Jonsson [25]) The problems gmininf(S) and gmininf(Sid), as well
as cmininf(S) and cmininf(Sid) are polynomially equivalent for any set of Boolean relations S.

As Durand and Hermann showed in [11], it is sometimes more convenient to investigate the
dual problem gminext of generalized minimal extension, defined as follows.

Problem: gminext(S)
Input: A set of variables V divided into three disjoint sets P , Z, and Q, an S-formula ϕ over
variables V , and a partial assignment m of ϕ for a subset of variables V ′ ⊆ V .
Question: Can m be extended to a (P,Z,Q)-minimal model m̄ of ϕ?

The problems vminext, cminext, and minext are derived from gminext by the corresponding
conditions on the sets Z and Q, as in the case of the gmininf problem. If m can be extended
to a (P,Z,Q)-minimal model m̄ of ϕ, but the model m̄ is not specified, we also say that m has
a (P,Z,Q)-minimal extension. The relationship between gmininf and gminext can be easily
established through the following construction. Let S be a finite set of Boolean relations and m an
assignment to the variables x1, . . . , xn. Let cx be the largest clause falsified by the assignment m,
i.e., cm = l1 ∨ · · · ∨ ln, where li = xi if m(xi) = 0, and li = ¬xi otherwise. It is clear that the
clause cm is not satisfiable in every (P,Z,Q)-minimal model of the formula ϕ if and only if the
assignment m can be extended to a (P,Z,Q)-minimal model m̄ of ϕ. From this follows that for each
set of relations S the problem gmininf(S) is Π2P-complete, coNP-complete, or polynomial-time
decidable if and only if gminext(S) is Σ2P-complete, NP-complete, or polynomial-time decidable,
respectively. This also holds for the problems vmininf and vminext, as well as for mininf and
minext.

Following Nordh and Jonsson [25], the Galois correspondence holds for gmininf and vmininf.
However, no such result is known for cmininf and mininf. In the latter cases we need to consider the
weak co-clones 〈S〉∄ instead of the usual clones 〈S〉. To be able to perform the required complexity
analysis, we need reduction theorems between minimal inference problems parametrized by different
sets of relations. Since our sets of relations 〈S〉∄ are not closed under existential quantification, we
cannot have the usual reduction theorem based on inclusion of polymorphisms.
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Proposition 4.4 Let R be a Boolean relation and S a set of relations. If R ∈ 〈S〉∄ then there exists
a polynomial many-one reduction from mininf(R) to mininf(S), as well as from cmininf(R) to
cmininf(S).

Proof: Suppose ϕ |=min ψ is an instance of mininf(R), where ϕ is a conjunction of constraints
built upon the relation R. Since R ∈ 〈S〉∄ holds, every constraint R(x1, . . . , xk) can be written
as a conjunction of constraints upon relations from S. Substitute the latter into ϕ, obtaining the
new formula ϕ′. Now, ϕ′ |=min ψ is an instance of mininf(S), where ϕ′ is only polynomially larger
than ϕ. It is clear that ϕ and ϕ′ have the same variables and therefore also the same models. Hence,
also the minimal models of ϕ and ϕ′ are the same. The same reasoning also holds for cmininf. 2

It is more convenient to work only with irredundant relations. It is intuitively clear that the
complexity of gmininf(S) and gmininf(S◦) for a set of relations S and its irredundant reduction S◦

is the same. Moreover, an equivalent result holds for the other three variants of the problem. For
gmininf and vmininf it follows from the Galois correspondence. For cmininf and mininf we have
the following result.

Proposition 4.5 If S◦ is the irredundant reduction of a set of relations S, then mininf(S) and
mininf(S◦), as well as cmininf(S) and cmininf(S◦), are equivalent under polynomial many-one
reductions.

Proof: Since both sets 〈S〉∄ and 〈S◦〉∄ are closed under variable permutation, the order of variables
is irrelevant.

We perform the proof only for mininf, since the generalization to cmininf is the same. The
reduction mininf(S◦) ≤p

m mininf(S) is straightforward. If R◦ ∈ S◦ is constructed from R by
identification of columns i, k + 1 and ϕ◦ contains the constraint R◦(x1, . . . , xk), then ϕ is equal
to ϕ◦ in which we replace R◦(x1, . . . , xk) by R(x1, . . . , xi, . . . , xk, xi). It is clear that ϕ◦ and ϕ have
the same models. Similarly, if R◦ ∈ S◦ is constructed from R = R◦ × {0, 1}p for a p ≥ 1 and ϕ◦

contains the constraint R◦(x1, . . . , xk), then ϕ is equivalent to ϕ◦ in which we replace R◦(x1, . . . , xk)
by R(x1, . . . , xk, xk+1, . . . , xp), where xk+1, . . . , xp are fresh variables. It is clear that m◦ is a model
of ϕ◦ if and only if m◦ · m′ is a model of ϕ for all m′ ∈ {0, 1}p. Hence, it is clear that m◦ is a
minimal model of ϕ◦ if and only if m◦ · 0 · · · 0 with p trailing zeros is a minimal model of ϕ.

Conversely, let ϕ contain the constraint R(x1, . . . , xi, . . . , xj , . . . , xk) built upon R ∈ S. If the
reduction R◦ is constructed from R by identification of columns i and j, then we can replace in ϕ
every occurrence of R(x1, . . . , xi, . . . , xj , . . . , xk) by R◦(x1, . . . , xi, . . . , xj−1, xj+1, . . . , xk), followed
by the replacement of xj by xi in the rest of the formula ϕ. It is clear that m = (m[1], . . . ,m[k]) is a
minimal model of R(x1, . . . , xk) if and only if m◦ = (m[1], . . . ,m[j−1],m[j+1], . . . ,m[k]) is a mini-
mal model of R◦(x1, . . . , xj−1, xj+1, . . . , xk), since the relation R forces the coordinates i and j to be
equal. Similarly, if R◦ is constructed from R = R◦×{0, 1}p for a p ≥ 1 and ϕ contains the constraint
R(x1, . . . , xk, . . . , xk+p), then we can replace every occurrence of this constraint by R◦(x1, . . . , xk).
It is clear that m0 = (m[1], . . . ,m[k], 0, . . . , 0) is a minimal model of R(x1, . . . , xk, . . . , xk+p) if and
only if m◦

0 = (m[1], . . . ,m[k]) is a minimal model of R◦(x1, . . . , xk). 2

As a consequence, we assume throughout the paper that all constraint languages are irredun-
dant.
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5 Minimal Inference With Free Variables and Constants (GMIN-
INF)

We want to derive in this section a complete characterization of complexity for the gmininf problem.
Theorem 4.2 is valid in this context, therefore we can use the algebraic approach based on clones
and co-clones, exploiting the Galois correspondence. Moreover, Theorem 4.3 is valid and hence we
can further restrict our attention to idempotent co-clones. Only one tractable case for the gmininf

problem is known, namely when the constraint language S consists only of relations that are both
Horn and dual Horn [6]. We prove two new tractability results for the gmininf problem for the
classes of bijunctive affine relations and Horn relations containing only negative literals. These
results together with the algebraic approach, combined with well-known complexity results from
the literature are sufficient to give a complete complexity classification for the gmininf problem.
We start with a relevant result from [25].

Theorem 5.1 (Nordh & Jonsson [25]) If the constraint language S is Horn, dual Horn, bi-
junctive, or affine, then gmininf(S) is in coNP. Otherwise, gmininf(S) is Π2P-complete.

Further we need to introduce some co-clones that will be of particular importance to us later.

Co-clone iR2: For a ∈ {0, 1}, a Boolean function f is called a-reproducing if f(a, . . . , a) = a.
The clones Ra contain all a-reproducing Boolean functions and the clone R2 contains all functions
that are both 0-reproducing and 1-reproducing. Hence iR2 is the co-clone consisting of all relations
closed under all functions that are both 0-reproducing and 1-reproducing. Note that functions
satisfying f(a, . . . , a) = a for all a in its domain are usually called idempotent.

Co-clone iD1: The co-clone iD1 consists of all relations closed under the operations aff(x, y, z) =
x+y+z (affinity) and maj(x, y, z) = (x∨y)∧ (y∨z)∧ (x∨z) (majority). Hence iD1 is the co-clone
of all binary affine relations, which can be generated by systems of linear equations with at most
two variables over the Boolean ring Z2.

Co-clone iS1: The clone S1 consists of all 1-separating functions (see [2] for the definition).
Dalmau proved in [9, Lemma 39] that iS1 is the co-clone consisting only of relations of the form
{0, 1}n r (1, . . . , 1). That is, the co-clone iS1 consists of all relations corresponding to conjunctions
of clauses where all literals are negative, also called negative Horn.

As we have seen in Theorem 4.3, co-clones of the form 〈Sid〉 are of particular importance to
us. Remember that gmininf(S) has the same complexity as gmininf(Sid). It is easy to see that
a co-clone S is idempotent if and only if it is closed under all a-reproducing functions, i.e., that
iR2 ⊆ S holds. Hence we can derive the following lemma.

Lemma 5.2 Let S1 and S2 be co-clones such that S2 is the least upper bound of iR2 and S1 in
Post’s lattice of co-clones. Then gmininf(S1) and gmininf(S2) are polynomially equivalent.

Proof: Remember that iR2 is the co-clone of all relations closed under all 0- and 1-reproducing
functions. Thus, {{(0)}, {(1)}} ⊆ iR2. If the set F contains a non-reproducing function f , then
{{(0)}, {(1)}} * Inv(F ). Therefore given a co-clone S. we have {{(0)}, {(1)}} ⊆ S if and only if
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iR2 ⊆ S. It follows that the least upper bound of iR2 and S1 in the lattice of co-clones is 〈Sid
1 〉 = S2.

Using Theorem 4.3 we get that gmininf(S1) and gmininf(S2) are polynomially equivalent. 2

Now we present our new tractable cases for the gmininf problem. The first is the bijunctive
affine case.

Proposition 5.3 gmininf(iD1) is decidable in polynomial time.

Proof: Instead of gmininf, we will consider the corresponding problem gminext, proving its
tractability. Since gmininf is the dual of gminext, its tractability follows.

The bijunctive affine relations are model sets of affine systems containing equations of the
following four types:

x+ y = 0, x+ y = 1, x = 0, x = 1.

Equations of type x + y = 0 imply x = y. Hence we can (1) eliminate the relation generated
by this equation, (2) identify the variables x and y in the rest of the problem, and (3) check its
compatibility with the partial assignment m.

The equations of the type x = 0 and x = 1 fix a value for a given variable. Hence, we can
(1) eliminate the relation generated by this equation, (2) substitute the given value for x in the
rest of the problem, and (3) check its compatibility with the partial assignment m.

If we have two equations x+ y = 1 and y + z = 1 with one overlapping variable y, then we can
replace the second equation by x+ z = 0. The conjunction (x+ y = 1) ∧ (x+ z = 0) is equivalent
through Gaussian elimination to the original conjunction (x+ y = 1) ∧ (y + z = 1). We can treat
now the equation x+ z = 0 as above.

At the end, we get a conjunction of relations built only from the relation [x + y = 1], where
each variable occurs in the system exactly once. Check if the partial assignment m, modulo afore-
mentioned variable identifications, is extensible to a satisfying assignment. If yes, the partial
assignment m can be extended to a minimal one, otherwise it cannot be extended. 2

We consider now the case of relations generated by clauses with only negative literals, also
called negative Horn.

Proposition 5.4 gmininf(iS1) is decidable in polynomial time.

Proof: Once more we consider the problem gminext instead of gmininf. Recall that the co-
clone iS1 consists of all relations corresponding to negative Horn formulas ϕ. i.e., relations of
the form {0, 1}n r {1 · · · 1}. Since ϕ is negative Horn, it is easy to decide whether a partial
assignment m can be extended to a satisfying assignment m̄. It should also be clear that such a
partial assignment can be extended to a minimal assignment if and only if all variables from P ,
which are assigned by this partial assignment m, are assigned to the value 0. This is because in
any satisfying assignment m′ with m′(x) = 1 there exists another satisfying assignment of ϕ which
coincides with m′ on all variables except x and where x is assigned to 0. Hence, gminext(iS1) and
therefore also gmininf(iS1) are both polynomial-time decidable. 2

The following proposition presents the complexity of gmininf(S) for 8 particular co-clones.

Proposition 5.5 gmininf(S) is coNP-complete when S is one of the following co-clones: iS2
11,

iS2
0, iL, iV, or iE. gmininf(S) is polynomial-time decidable when S is one of the following co-

clones: iS12, iD1, or iM2.
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Proof: The least upper bound of iS2
11 and iR2 is iS2

10. The co-clone iS2
10 contains all relations

generated by Horn formulas with at most 2 literals per clause. Cadoli and Lenzerini proved in [6]
that gmininf(iS2

10) is coNP-complete, hence by Lemma 5.2 it follows that gmininf(iS2
11) is coNP-

complete.
The co-clone iS2

0 contains the relations generated by formulas with clauses of the form (x ∨ y),
i.e., containing two positive literals. Cadoli and Lenzerini proved in [6] that gmininf(iS2

0) is coNP-
complete.

The least upper bound of the co-clones iL and iR2 is iL2, the set of all relations generated by
affine systems. Durand and Hermann proved in [11] that gmininf(iL2) is coNP-complete, hence
by Lemma 5.2 it follows that gmininf(iL) is coNP-complete.

The least upper bound of the co-clones iV and iR2 is iV2, the set of all relations generated by
dual Horn formulas. Since iS2

0 ⊆ iV2 holds and gmininf(iS2
0) is coNP-complete, it follows, using

Lemma 5.2, that gmininf(iV2) is coNP-complete.
The least upper bound of the co-clones iE and iR2 is iE2, the set of all relations generated by

Horn formulas. Since iS2
11 ⊆ iE2 holds and gmininf(iS2

11) is coNP-complete, using Lemma 5.2 it
follows that gmininf(iE) is coNP-complete.

We proved in Proposition 5.4 that gmininf(iS1) is in P. The least upper bound of the co-
clones iS1 and iR2 is iS12, therefore using Lemma 5.2 it follows that gmininf(iS12) is in P.

The membership of gmininf(iD1) in P is proved in Proposition 5.3.
The co-clone iM2 consists of all relations closed under the monotone functions, i.e., the relations

generated by formulas which are both Horn and dual Horn. Cadoli and Lenzerini proved in [6] that
gmininf(iM2) is in P. 2

In the previous proof we refer to results of Cadoli and Lenzerini in [6] concerning gmininf. Of
course, they did not consider the problem as we defined it in our paper, but proved equivalent
results from which the required result concerning gmininf can be obtained by easy syntactic
reformulations.

The previous proposition together with the structure of Post’s lattice of co-clones and Theo-
rem 5.1 yields the following trichotomy result for the complexity of gmininf(S).

Theorem 5.6 (Trichotomy of GMININF) Let S be a nonempty finite set of logical relations.
If every relation in S is Horn and dual Horn, or bijunctive affine, or negative Horn, then gmininf(S)
is decidable in polynomial time. Else if every relation in S is dual Horn, bijunctive, or affine, then
gmininf(S) is coNP-complete. Otherwise gmininf(S) is Π2P-complete.

Figure 2 shows the complexity results for gmininf(S) visualized in the lattice of co-clones.
The co-clones colored in dark gray correspond to Π2P-complete problems, those colored in light
gray correspond to coNP-complete problems, and finally those colored in white correspond to
polynomial-time decidable problems.

6 Minimal Inference With Free Variables But Without Constants
(VMININF)

We want to derive in this section a characterization of the complexity for the vmininf problem
under restrictions on the types of allowed constraints. Theorem 4.2 is valid in this context, therefore
we can use the algebraic approach working with clones and co-clones. Since the polynomial-time
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decidable cases are known and a dichotomy between Π2P-complete cases of vmininf and those
included in coNP (almost) carries over from [21], it is the case that the most involved proofs
concern the intermediate level, especially the case of affine relations. In fact, the coNP-hardness
proofs for affine relations that we present here are a significant strengthening of the main result of
Durand and Hermann from [11]. Moreover, our proofs are much simpler than the rather involved
proof in [11].

6.1 Complementive or 1-valid Relations

Note first that Kirousis and Kolaitis show in [21] the existence of 1-valid relations S (i.e., relations
from iI1) for which the problem mininf(S) is Π2P-complete. Using Theorem 4.2 we obtain the
following result.

Proposition 6.1 vmininf(iI1) is Π2P-complete.

We continue with complementive relations. Let R ⊆ {0, 1}n be an n-ary Boolean relation, R0

the closure of R under a 0-prefix, and R¬ the closure of R under negation, i.e.,

R0 = {(0, a1, . . . , an) | (a1, . . . , an) ∈ R}

R¬ = R ∪ {(1 − a1, . . . , 1 − an) | (a1, . . . , an) ∈ R}

Define R0¬ = (R0)¬ to be the (n+1)-ary relation produced from R by a 0-prefix and closure under
negation.

Lemma 6.2 If Pol(R) = I2 then Pol(R¬) = N2.

Proof: It is clear that R¬ is closed under negation, resulting from the closure construction. We
investigate the possibility of Pol(R¬) to reside in a larger clone than N2.

Suppose that Pol(R¬) ⊇ N, hence R¬ is both 0- and 1-valid. Therefore R must be 0- or 1-valid,
what is a contradiction.

Suppose that Pol(R¬) ⊇ L3. Consider the existence of three vectors a, b, and c from R¬. From
the pigeonhole principle it follows that either (1) a, b ∈ R and c̄ ∈ R¬ r R, or (2) a ∈ R and
b̄, c̄ ∈ R¬ r R. If the second choice has been made, then there exist the vectors ¬a ∈ R¬ r R and
¬b̄,¬c̄ ∈ R, hence we can restrict ourselves to the first case.

Let a = (a1, . . . , an), b = (b1, . . . , bn), and c̄ = (1 − c1, . . . , 1 − cn) be the considered vectors for
some c = (c1, . . . , cn) ∈ R. The co-clone iL3 is closed under the operation x + y + z + 1 mod 2,
therefore we must have the vector d = (d1, . . . , dn) ∈ R¬, where

di = ai + bi + (1 + ci) + 1 mod 2

= ai + bi + ci mod 2

for all i = 1, . . . , n. If the vector d belongs to R, then R must be included in iL2, what is a
contradiction. If d ∈ R¬ r R, then the complement d̄ = (1 − d1, . . . , 1 − dn) must be in R, i.e.,
d̄i = 1 − di = di + 1 = ai + bi + ci + 1 mod 2. But then R must be included in iL3, what is once
more a contradiction. 2

Lemma 6.3 If Pol(R) = I2 then Pol(R0) = I2.
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Proof: Let R be an n-ary Boolean relation and R0 its (n + 1)-ary extension by the 0-prefix.
Suppose that R0 is closed under a Boolean k-ary function f other than the identity. This means
that

(

f(a1[0], . . . , ak[0]), f(a1[1], . . . , ak[1]), . . . , f(a1[n], . . . , ak[n])
)

∈ R0

for any not necessarily distinct k-tuple of vectors a1, . . . , ak ∈ R0. However, this also implies

(

f(a1[1], . . . , ak[1]), . . . , f(a1[n], . . . , ak[n])
)

∈ R

what is in contradiction with Pol(R) = I2. 2

Proposition 6.4 vmininf(iN2) is Π2P-complete.

Proof: We know from [13] that there exists a relation R for which mininf(R) is Π2P-complete,
hence minext(R) is Σ2P-complete. Let

ϕ(~x, ~y) =
k

∧

i=1

R(~x, ~y)

be a CNF-formula and m = (m1, . . . ,mn) a partial assignment to the variables ~x. Let

ϕ′(z, ~x, ~y) =

k
∧

i=1

R0¬(z, ~x, ~y)

be a CNF-formula and m′ = (0,m1, . . . ,mn) a partial assignment to the variables (z, ~x). It is clear
that the vector m can be extended to a minimal assignment of ϕ if and only if m′ can be extended
to a minimal assignment of ϕ′. Indeed, if Pol(R) = I2 then Pol(R0¬

i ) = N2 for each i = 1, . . . , k,
following Lemmas 6.3 and 6.2. Since the formula ϕ′ is a conjunction of complementive relations,
using Theorem 4.2 this proves the result. 2

6.2 0-valid Relations

We begin by observing that vmininf for 0-valid relations is in coNP.

Proposition 6.5 vmininf(iI0) is in coNP.

Proof: Any formula ϕ(x1, . . . , xn) built over a set of 0-valid relations has at least one minimal
model m which is m(xi) = 0 for all i. Suppose ϕ is the theory, ψ the clause to be minimally
inferred and P , Z the partition of the variables into variables to be minimized and free variables,
respectively. If ψ contains a literal ¬x such that x ∈ P , then obviously ψ is true in any minimal
model of ϕ. If ψ consists only of positive literals, then ψ cannot be minimally inferred from ϕ since
the all-zero minimal model is not a model of ψ. Otherwise, let ϕ0 (ψ0) be the formula (clause)
resulting from assigning 0 to all the variables in P . Obviously ψ can be minimally inferred from ϕ
if and only if ψ0 can be (classically) inferred from ϕ0. The result follows since classical inference is
in coNP. 2

Proposition 6.6 vmininf(iN) is coNP-complete.
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Proof: We present a polynomial-time reduction from the NP-complete problem nae-3-sat [35],
i.e., sat(nae) where nae = {0, 1}3 r {000, 111}, to the complement of vmininf(iN). Given an
instance ρ(X) of sat(nae), let (ϕ,ψ, P, Z) be the instance of vmininf(iN) where Z = X ∪ {xq},
P = {xm}, and ψ = ¬xq (i.e., the clause to be inferred is the single negative literal ¬xq), where xq,
xm are fresh variables not occurring in X. Let R be the following 5-ary relation

R = {00000, 11111} ∪ {0, 1} × nae × {0, 1}.

which is in iN since it is 0-valid, 1-valid, and complementive. For each constraint nae(xi, xj , xk)
in ρ(X) let R(xm, xi, xj , xk, xq) ∈ ϕ. Now ψ cannot be minimally inferred from ϕ if and only if
ϕ ∧ ¬xm ∧ xq is satisfiable. This is because R is 0-valid, and thus, xm must have the value 0 in
every minimal model of ϕ. It is easy to realize that ϕ ∧ ¬xm ∧ xq is satisfiable if and only if the
original instance ρ(X) of sat(nae) is satisfiable. 2

The following result follows directly from co-clone inclusions in Post’s lattice, Theorem 4.2 and
Propositions 6.5 and 6.6.

Corollary 6.7 If iN ⊆ 〈S〉 ⊆ iI0 holds then vmininf(S) is coNP-complete.

6.3 Dual Horn and Bijunctive Relations

For the instances of vmininf included in coNP, it is more convenient to consider the dual instances
vminext in NP. We consider the problem vminext(iS2

0). Note that the clone S2
0 includes the

clone D2, corresponding to bijunctive relations, as well as the clone V1 corresponding to 1-valid
dual Horn relations. We need first a lemma that exhibits an NP-complete problem for a relation
belonging to the co-clone iS2

0, which was already proved by Cadoli and Lenzerini in [6, Theorem 5].

Lemma 6.8 (Cadoli & Lenzerini [6]) minext(R) is NP-complete for R = [x ∨ y].

Proposition 6.9 vmininf(iS2
0) is coNP-complete.

Proof: We have [x ∨ y] ∈ iS2
0 since [x ∨ y] = {01, 10, 11} is closed under both the implication

function and the majority function. In the same time we have [x∨y] /∈ R1 since R1 ⊇ E2 holds and
[x∨ y] is not closed under conjunction, because 01∧ 10 = 00 /∈ [x∨ y]. The rest of the proof follows
from Lemma 6.8, Theorem 4.2, and the correspondence between vminext and vmininf. 2

6.4 Affine Relations

We consider the problems vmininf(iL1) as well as vmininf(iL3). We need first some supporting
lemmas to exhibit NP-complete problems built from relations in the corresponding co-clones. The
result presented in the supporting lemma is a significant strengthening of the previous result due
to Durand and Hermann [11], which states that there exists a set of affine relations S for which
mininf(S) is coNP-complete. Moreover, the previous proof is rather involved in comparison to the
proofs we present here.

Lemma 6.10 minext(R) is NP-complete for R = [x+ y + z + w = 1].
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Proof: The equation x+ y+ z+w = 1 gives rise to x+ y = 1 when we identify the variables y, z,
and w. The membership in NP is clear and we prove NP-hardness by a reduction from 3sat.

Suppose ϕ(x1, . . . , xn) = c1 ∧ · · · ∧ ck is a 3sat formula. Associate the variables yi with the
clauses ci for i = 1, . . . , k. Construct the system ϕ′ in the following way. Add the equations
xi + x′i = 1 for i = 1, . . . , n to the constructed formula ϕ′, what forces xi and x′i to take opposite
values. For each clause ci = l1i ∨ l

2
i ∨ l

3
i add the following three equations

z3i−2 + v1
i + yi + w = 1, z3i−1 + v2

i + yi + w = 1, z3i + v3
i + yi + w = 1

to the formula ϕ′, where

vj
i =











xp if lji = ¬xp,

x′p if lji = xp.

The variable vj
i is a placeholder for the negation ¬lji of the literal lji . The variable w is the same

all over the system.

Claim: The formula ϕ is satisfiable if and only if the assignment s(yi) = 1 for all i = 1, . . . , k
of ϕ′ has a minimal extension.

Let ϕ be satisfiable. Then there exists a satisfying assignment m of the formula ϕ. Since every
clause ci is satisfied, for each i there must be a j such that m(lji ) = 1. Let m̄ be an extension of m

that satisfies ϕ′. Following the construction of ϕ′, there must be a variable vj
i such that m̄(vj

i ) = 0.
Then there are three possibilities to get a minimal assignment m̄:

1. When we set m̄(z3i+3−j) = 1, m̄(yi) = 0, and m̄(w) = 0, we will get an assignment which is
not interesting for us.

2. When we set m̄(z3i+3−j) = 0, m̄(yi) = 0, and m̄(w) = 1, we will also get an assignment which
is not interesting for us.

3. When we set m̄(z3i+3−j) = 0, m̄(yi) = 1, and m̄(w) = 0, we get an assignment which is an
extension of the assignment s(yi) = 1 for all i = 1, . . . , k.

These three possible assignments are clearly incomparable and no value can be changed from 1
to 0 to get another satisfying assignment of ϕ′. Therefore the assignment m̄ from the third case is
minimal.

Let ϕ be unsatisfiable. Then for each assignment m there exists a falsified clause ci in ϕ. This
means that we have m(lji ) = 0 for each j = 1, 2, 3. Let m̄ be an extension of m that satisfies the

formula ϕ′. Following the construction of ϕ′, we have m̄(vj
i ) = 1 for each j. Then we can set

m̄(z3i+3−j) = 0, m̄(yi) = 0, and m̄(w) = 0 for all j. This implies that the assignment s(yi) = 1 for
all i cannot be extended to a minimal one. 2

Proposition 6.11 vmininf(iL3) is coNP-complete.
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Proof: The relation [x+ y + z + w = 1] = {0001, 0010, 0100, 1000, 0111, 1011, 1101, 1110} is affine
and complementive. It is neither 1-valid nor 0-valid and it is not bijunctive since the closure under
majority computes maj(0001, 0010, 0100) = 0000 /∈ [x + y + z + w = 1]. The proof is finished by
means of Lemma 6.10, Theorem 4.2, and the correspondence between vminext and vmininf. 2

Lemma 6.12 minext(R) is NP-complete for the relations R = [(x + y + z = 1) ∧ (x + w = 1)]
and R = [(x+ y + z = 0) ∧ (x+ w = 1)].

Proof: The membership in NP is clear, we focus on the NP-hardness proof by means of a reduction
from 3sat. Suppose ϕ(x1, . . . , xn) = c1 ∧ · · · ∧ ck is a 3sat formula. Associate the variables yi with
the clauses ci for i = 1, . . . , k. Construct the system ϕ′ in the following way.

For each clause ci = l1i ∨ l
2
i ∨ l

3
i add the following three formulas

(z3i−2+v
1
i +yi = 1)∧(v1

i +u1
i = 1), (z3i−1+v

2
i +yi = 1)∧(v2

i +u2
i = 1), (z3i+v

3
i +yi = 1)∧(v3

i +u3
i = 1)

to the formula ϕ′, where

vj
i =







xp if lji = ¬xp,

x′p if lji = xp.
and uj

i =







x′p if lji = ¬xp,

xp if lji = xp.

The variable vj
i is a placeholder for the negation ¬lji of the literal lji and vice versa for uj

i .

Claim: The formula ϕ is satisfiable if and only if the assignment s(yi) = 1 for all i = 1, . . . , k
of ϕ′ has a minimal extension.

Let ϕ be satisfiable. Let m be a satisfying assignment of ϕ. Then in each clause ci there
must be a literal lji such that m(lji ) = 1. Hence, for each extension m̄ of m that satisfies ϕ′ we

must have m̄(vj
i ) = 0 following the definition of vj

i , where the equation x + x′ = 1 enforces the

variables x and x′ to take opposite values. The value m̄(vj
i ) = 0 implies two different incomparable

assignments for the variables yi and z3i+3−j . The first one is m̄(z3i+3−j) = 1 and m̄(yi) = 0, which
is not interesting for us. The second is m̄(z3i+3−j) = 0 and m̄(yi) = 1, which is the desired minimal
assignment. It is clear from the construction of the formula ϕ′ that this assignment is minimal.
It is also clear that m̄ is an extension of the assignment s(yi) = 1 for all i = 1, . . . , k. Hence, the
assignment s(yi) = 1 for all i can be extended to a minimal one.

Let ϕ be unsatisfiable. Then for all assignments m of the variables V there exists a falsified
clause ci. This implies thatm(lji ) = 0 for all j = 1, 2, 3. Let m̄ be an extension ofm that satisfies the
formula ϕ′. Then the structure of the formula ϕ′ implies that we have m̄(v1

i ) = m̄(v2
i ) = m̄(v3

i ) = 1.
This implies the existence of a minimal assignment with yi = 0 and m̄(z3i+3−j) = 0 for all j. Hence,
the assignment s(yi) = 1 for all i cannot be extended to a minimal one.

Finally for the latter relation, by swapping variables we get [(x + y + z = 0) ∧ (x + w = 1)] =
[(w + y + z = 1) ∧ (x+ w = 1)] and the result follows from the previous relation. 2

Lemma 6.13 minext(R) is NP-complete for R = [x+y+z = 1] and R = [(x+y+z = 1)∧(w = 1)].
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Proof: We proceed by dropping the relation [x+ y = 1] from S in Lemma 6.12. This means that
we reformulate the proof using only the relation [x+y+z = 1]. Write the equation x′′i +xi +x′i = 1
instead of xi +x′i = 1 for each i. Add also the equation x′′i +ui +wi = 1 for each i, where ui and wi

are new variables.
Define the partial assignment to be s(yi) = 1 and s(ui) = 1 for each i. Let m be a minimal

assignment of the formula ϕ′. Suppose that there exists an i, such that m(x′′i ) = 1. Then we have
also m(wi) = 1. But then we can construct a new assignment m′ with m′(ui) = 0, m′(wi) = 0,
and m′(x′′i ) = 1. This is a contradiction to the assumption that the partial assignment s can be
extended to a minimal one. Hence, for all i we must have m(x′′i ) = 0.

The relation R′(x, y, z, w) = [(x + y + z = 1) ∧ (w = 1)] can be constructed from the relation
R(x, y, z) = [x + y + z = 1] as R′(x, y, z, w) = R(x, y, z) ∧ R(w,w,w). Since the value of the
variable w is determined by the trivial equation w = 1, the complexity of minext(R′) is equal to
that of minext(R). 2

Proposition 6.14 vmininf(iL1) is coNP-complete.

Proof: For the relation [x+ y+ z = 1] from Lemma 6.13 we know that [x+ y+ z = 1] ∈ iL1, since
the relation is linear and 1-valid. We also know that [x+ y + z = 1] /∈ iL, since [x+ y + z = 1] is
not 0-valid. Finally, [x+ y + z = 1] /∈ iR1 since the relation [x+ y + z = 1] = {001, 010, 100, 111}
is not closed under disjunction, i.e., 001 ∨ 010 = 011 /∈ [x + y + z = 1]. The proof is finished by
means of Lemma 6.13, Theorem 4.2, and the relation between vminext and vmininf. 2

6.5 Polynomial-Time Decidable Cases

The polynomial-time decidable cases for gminext(S) propagates to vminext(S). There are three
other cases of vminext(S) that are also decidable in polynomial time.

Tractability of vminext(S) when for sets of Horn relations S was already shown by Cadoli and
Lenzerini in [6]. This implies the following result.

Proposition 6.15 (Cadoli & Lenzerini [6]) vmininf(iE2) is decidable in polynomial time.

Proposition 6.16 vmininf(iL0) and vmininf(iV0) are in P.

Proof: We only give the proof for iL0 since the proof for iV0 uses exactly the same argument.
Given an instance (ϕ,ψ, P, Z) of vmininf(iL0), we know that the all-zero assignment 0 · · · 0 is

a minimal model of ϕ since iL0 is 0-valid. If ψ contains a negative literal ¬x such that x ∈ P , then
obviously ψ is true in any minimal model of ϕ. If ψ consists only of positive literals, then ψ cannot
be minimally inferred from ϕ since the all-zero minimal model is not a model of ψ.

Otherwise, we can reduce the problem by assigning 0 to all the variables in P ; resulting in the
equivalent instance (ϕ0, ψ0, ∅, Z). The clause ψ can be minimally inferred from ϕ if and only if ψ0

can be (classically) inferred from ϕ0. Note that ϕ0 is still a formula built from relations in iL0

(i.e., affine and 0-valid), and since inference over affine constraints is polynomial-time decidable it
follows that vmininf(iL0) is in P. 2
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Figure 3: Trichotomy of vmininf
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6.6 Main Result

We put all results of this section together and we get the following trichotomy result for minimal
inference with free variables and without constants.

Theorem 6.17 (Trichotomy of VMININF) Let S be a nonempty finite set of logical relations.
If every relation in S is Horn, or affine and 0-valid, or dual Horn and 0-valid, or bijunctive affine,
then vmininf(S) is decidable in polynomial time. Else if every relation in S is 0-valid, or dual
Horn, or bijunctive, or affine, then vmininf(S) is coNP-complete. Otherwise vmininf(S) is Π2P-
complete.

Figure 3 shows the complexity results for vmininf(S) visualized in the lattice of co-clones.
The co-clones colored in dark gray correspond to Π2P-complete problems, those colored in light
gray correspond to coNP-complete problems, and finally those colored in white correspond to
polynomial-time decidable problems. If we compare the lattices in Figures 2 and 3, we see that the
absence of constants can sometimes make the minimal inference problem easier.

7 Expressivity Techniques

The problems cmininf and mininf are not compatible with the co-clone closure 〈S〉 of a set of
relations S any more, since the application of existential quantification to a constraint can change
the order of the models in the corresponding relation, but only with the weak co-clone closure 〈S〉∄.
For this reasons we need to review in this section techniques compatible with the weak co-clone
closure 〈S〉∄. The first is due to Schaefer [35], for showing that certain relations belong to 〈S〉∄
based on information about the polymorphisms of S. The second one, namely the 1-restriction, is
due to Kirousis and Kolaitis [21] and it was already mentioned in the preliminaries. We begin by
stating some basic but useful facts about the set 〈S〉∄.

Lemma 7.1 If S is not closed under the functions f1, . . . , fk then there exists a single relation
R ∈ 〈S〉∄ which is not closed under the functions f1, . . . , fk.

Proof: Since S is not closed under the functions f1, . . . , fk, there exist relations R1, . . . , Rk in S
such that Ri is not closed under fi. Let R be the Cartesian product of the relations R1, . . . , Rk.
Obviously R can be expressed as the conjunction R1(x11, . . . , x1m) ∧ · · · ∧Rk(xk1, . . . , xkn), where
x11, . . . , xkn are all distinct variables. Hence R ∈ 〈S〉∄ holds and R is not closed under the functions
f1, . . . , fk. 2

If a relation R is not closed under several function, then the witnesses of this non-closure are
usually different vectors in R. For instance, if R is neither Horn nor dual Horn, then there exist
a, b, c, d ∈ R, such that a∧ b /∈ R and c∨ d /∈ R, where the sets {a, b} and {c, d} are not necessarily
equal. The following lemma shows that we can always find a new relation R′ ∈ 〈R〉∄, such that the
witnesses of the non-clorure for all functions are the same.

Lemma 7.2 If a relation R is not closed under the functions f1, . . . , fk of arities a1, . . . , ak where a
denotes the maximum arity of the functions, then there is a relation R′ ∈ 〈R〉∄ containing tuples
t1, . . . ta, such that for any function fi and any ai tuples from t1, . . . , ta, the tuple resulting from
applying fi to these ai tuples (in any order), is not in R′.
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Proof: We prove the result by induction on the number of functions k. In the base case we
have one function f1, and we let R′ be Ra1!. Since we know that R is not closed under f1 there
exist a1 tuples t1, . . . , ta1

such that f1(t1, . . . , ta1
) /∈ R. Let Sa1

denote the group of permutations
of 1, . . . , a1, and denote the a1! permutations by π1, . . . , πa1!. Now construct the a1 tuples by, for
each 1 ≤ i ≤ a1, constructing the tuple t′i = tπ1(i) × · · · × tπa1!(i). Clearly, f1 applied to the tuples

t′1, . . . , t
′
a1

in any order results in a tuple which is not in R′.
Now, assuming the result holds for k − 1 functions f1, . . . , fk−1 we show that it must hold also

for k functions f1, . . . , fk. Assume without loss of generality that fj , for some j < k, is a function
of maximum arity among f1, . . . , fk. By assumption we know that there is a relation R1 ∈ 〈R〉∄
and aj = a tuples t′1, . . . , t

′
aj

in R1 such that for any function fi, for some i < k, the function fi

applied to any ai tuples from t′1, . . . , t
′
aj

(in any order) results in a tuple which is not in R1. We
also know that there is a relation R2 ∈ 〈R〉∄ and ak tuples such that fk applied to these tuples
in any order results in a tuple which is not in R2. By assumption aj ≥ ak. By taking Cartesian
products of R2 we get a relation R′

2 containing at least aj tuples s′1, . . . , s
′
aj

such that fk applied to
any ak of these aj tuples (in any order), results in a tuple that is not in R′

2. Now take the Cartesian
product R1 ×R′

2 and consider the tuples t′1 · s
′
1, . . . , t

′
aj

· s′aj
(where · denotes tuple concatenation).

By the reasoning above we have that fi ∈ {f1, . . . , fk} applied (in any order) to any ai tuples from
t′1 · s

′
1, . . . , t

′
aj

· s′aj
results in a tuple which is not in R1 ×R′

2, and the result follows. 2

The notation R[x/V ] means that in the relation R the variables V are replaced with the new
variable x. As a shorthand, we also write R[V ] instead of R[x/V ] when the new variable x is
implicitly clear or when V representss both the set of variables to be replaced and the fresh variable.
This means that V is a set of variables, but also the identifier of a new variable, by which all
variables in V are replaced in R[V ]. Recall that [R(x1, . . . , xk)] denotes the relation generated by
the constraint R(x1, . . . , xk).

The following is the typical situation we are faced with when proving our hardness results. We
have a set of relations S for which we want to prove a hardness result. We also know a hardness
result for a relation R. The goal is to show that R ∈ 〈S〉∄. For this purpose we have some
information on S, namely we know that S is closed under the operations f1, . . . , fj , but it is not
closed under the operations g1, . . . , gk. The first step is to use Lemmas 7.1 and 7.2 to produce a
single relation R′ ∈ 〈S〉∄ that has the properties stated in Lemma 7.2 and is not closed under any
of the operations g1, . . . , gk.

The next (crucial) step is to prove that R can be implemented by R′ using variable identification.
We first show that R′ must contain a number of vectors a1, . . . , ap, usually by the argument that R′

would otherwise be closed under one of the functions g1, . . . , gk. For all Boolean vectors m of
length p we construct the variable sets Vm = {x | a1(x) = m[1], . . . , ap(x) = m[p]}. We then
construct the constraint Q(V0, . . . , V2p−1) = R′[Vi | i = 0, . . . , 2p − 1]. For instance, when we know
the existence of the vectors a, b, c ∈ R′, we create the variable sets Vijk = {x | a(x) = i, b(x) =
j, c(x) = k} and construct the constraint Q(V0, . . . , V7) = R′[V000, . . . , V111].

Finally, we must show that the constructed constraint R′[Vi | i = 0, . . . , 2p − 1], possibly
after additional variable identification, really generates the relation R. For more information on
this technique, see the monograph [8] or Schaefer’s original exposition [35]. Note again that our
implementations differ from Schaefer’s since we are not allowed to use existential quantification to
eliminate variables.
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8 Minimal Inference Without Free Variables But With Constants
(CMININF)

In this section we want to derive a complete complexity characterization of the cmininf problem.
Theorem 4.2 is not valid any more in this context since there are for example sets of relations S
such that cmininf(S) is in P but cmininf(〈S〉) is coNP-complete.

The complexity classification for the cmininf problem will be carried out in two phases. First
we deal with sets of relations S that are neither Horn, dual Horn, bijunctive, nor affine. We call
these types of sets S for non-Schaefer. Then we move on and classify the complexity of cmininf(S)
for sets of relations S that are Schaefer (i.e., S which are Horn, dual Horn, bijunctive, or affine).

In the first phase we will use an approach already used by Kirousis and Kolaitis in [21], where
we use 1-valid 0-sections, a well-known concept from coding theory and already used for circum-
scription [20] and minimal inference [21]. The following result is the main theorem in [21].

Proposition 8.1 (Kirousis & Kolaitis [21]) Let S be a finite set of Boolean relations and S∗

the corresponding 1-valid restriction. Then there exists a polynomial many-one reduction from
cmininf(S∗) to cmininf(S).

Proposition 8.2 Let S be non-Schaefer. If S∗ is Schaefer then cmininf(S) is coNP-complete,
otherwise cmininf(S) is Π2P-complete.

Proof: Kirousis and Kolaitis proved in [21] that mininf(Sid) is Π2P-complete when S∗ is not
Schaefer. We give a polynomial-time reduction from mininf(Sid) to cmininf(S) proving that
cmininf(S) is Π2P-complete when S∗ is not Schaefer. Given an instance ϕ |=min ψ of mininf(Sid)
consisting of a conjunction of constraints ϕ over Sid and a clause to be inferred ψ. For all constraints
of the form x = 0 (x = 1) we add the literal x (¬x) to ψ, remove the constraint x = 0 (x = 1), and
let x be fixed (i.e., add x to Q). The idea behind the reduction is as follows. If x = 0 is a constraint
in ϕ, we remove it and modify ψ to make sure that every minimal model m∗ of ϕr {x = 0} such
that m∗(x) = 1, is a model of ψ, and in the case where m∗(x) = 0 we make sure that m∗ is a
model of the modified ψ if and only if m∗ was a model of the original ψ. The case where x = 1
is a constraint in ϕ is handled in the same way. It should be clear that the resulting instance is
equivalent to the original instance ϕ |=min ψ.

Kirousis and Kolaitis proved in [20] that the minimal model checking problem for circumscrip-
tion with constants but no free variables is in P when S∗ is Schaefer, and hence by well-known ar-
guments cmininf(S) is in coNP when S∗ is Schaefer. It remains to prove that cmininf(S) is coNP-
hard when S is non-Schaefer. We give a reduction from unsat(Sid), the complement of the satisfia-
bility problem, to cmininf(S). Since unsat(Sid) is coNP-complete when S is non-Schaefer [35], our
result will follow. Given a conjunction of constraints ϕ over Sid, let ϕ′ be ϕ ∧ (x = 1) where x is a
fresh variable. Then ¬x can be inferred from ϕ′ under propositional circumscription if and only if ϕ
is not satisfiable. This gives a reduction from unsat(Sid) to mininf(Sid). Hence when combined
with the reduction from mininf(Sid) to cmininf(S), we get the desired result that cmininf(S) is
in coNP-hard when S is non-Schaefer. 2

The following result appears in [6] in the form that ECWA-reasoning with constants for formulas
that are both Horn and bijunctive (hk in their notation) is coNP-complete.
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Proposition 8.3 (Cadoli & Lenzerini [6]) The problem cmininf(S) is coNP-complete for S =
{[¬x ∨ ¬y], [¬x ∨ y]}.

8.1 Incomparable Relations

In this section we present a new tractable class for cmininf.

Proposition 8.4 If a set of relations S is Schaefer and incomparable then cmininf(S) is in P.

Proof: Suppose ϕ |=min ψ is an instance of cmininf with S incomparable. It can be shown that [ϕ]
is an incomparable relation. This follows from the fact that incomparable relations are preserved
under conjunction and variable identification. Given two formulas ϕ1 and ϕ2, each having only
incomparable models, their conjunction ϕ1 ∧ϕ2 has only incomparable models since a model of ϕ1

can never be extended to two comparable models of ϕ1 ∧ ϕ2 (because ϕ2 has only incomparable
models). Variable identification only reduce the set of models of a formula. If the original set of
models was incomparable, then of course the reduced set of models will also be incomparable. Also
note that adding some variables to Q (i.e., letting them be fixed) can never make two incomparable
models of a formula comparable.

Since ϕ is expressed by conjunction and variable identification over an incomparable set of
relations S it follows that all models of ϕ are incomparable and hence also minimal. Thus, ϕ |=min ψ
if and only if ϕ |= ψ, where the latter can be checked in polynomial time since S is Schaefer. 2

The following example shows the impact of incomparable relations on the tractability of cmininf

compared to vmininf upon the same relation.

Example 8.5 Let R = {0110, 1001, 1100} then R is a bijunctive relation but not other Schaefer
and hence vmininf(R) is coNP-complete. On the other hand cmininf(R) is in P since R is
incomparable. Let R′ = {00111, 01010, 10001, 11100} then R′ is affine but not other Schaefer and
hence vmininf(R′) is coNP-complete. But again cmininf(R′) is in P since R′ is incomparable.

Proposition 8.6 cmininf(N) for N = {[¬x ∨ ¬y], [x 6≡ y]} is in P.

Proof: Suppose ϕ |=min ψ is an instance of cmininf(N) for N = {[¬x ∨ ¬y], [x 6≡ y]}. Check
first that ϕ is satisfiable, what can be done in polynomial time since S is bijunctive. If ϕ is not
satisfiable, then ϕ |=min ψ is trivially satisfied.

If the formula ϕ is produced only from the relation [¬x ∨ ¬y] then it is 0-valid and therefore
ϕ |=min ψ is in P.

The formula ϕ is a conjunction of binary constraints of the type (¬x ∨ ¬y) and (x 6≡ y). Let
us consider the structure of ϕ. If a variable v occurs only in negative constraints, i.e., only in
constraints of the form (¬x ∨ ¬y), then v has the value 0 in all minimal models of ϕ. Hence, we
can drop all clauses (¬v ∨ ¬y) from ϕ and remove the variable v from ψ. Repeat this replacement
until all variables occur in a 6≡ constraint.

Let ϕ′ |=min ψ′ be the resulting instance. Assume with the aim of reaching a contradiction
that there exist two comparable models m0 < m1 of ϕ′. Then there exists a variable x, such that
m0(x) = 0 and m1(x) = 1. Let y be a variable occurring together with x in a (x 6≡ y) constraint.
Then we have m0(y) = 1 and m1(y) = 0, which implies that m0 ≮ m1, constituting a contradiction.
Hence, all models of ϕ′ are incomparable. Therefore ϕ′ |=min ψ

′ holds if and only if ϕ′ |= ψ′ which
is decidable in polynomial time since ϕ′ is bijunctive. 2
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Compare the result of Proposition 8.6 with the fact that vmininf(N) forN = {[¬x∨¬y], [x 6≡ y]}
is coNP-complete.

8.2 Dual Horn Relations

We apply Schaefer’s technique to obtain the following representation lemma.

Lemma 8.7 Let R be a Boolean relation which is dual Horn, but not Horn. Then we can construct
the relation [x ∨ y] from R by variable identification and constant substitution.

Proof: If R is dual Horn, but not Horn, then there exists two vectors a, b ∈ R, such that a∧ b /∈ R
and a ∨ b ∈ R. Construct the sets of variables Vij = {x | a(x) = i, b(x) = j}. Construct the
constraint Q(x, y) = R[0/V00, x/V01, y/V10, 1/V11]. It is clear that the constraint Q(x, y) generates
the relation {01, 10, 11} = [x ∨ y]. 2

Proposition 8.8 cmininf(S) for all sets S of relations, which are dual Horn but not Horn, is
coNP-complete.

Proof: From each set of relation S, which are dual Horn but not Horn, we can produce the relation
[x ∨ y] according to Lemma 8.7. Cadoli and Lenzerini [6, Theorem 5] proved that mininf([x ∨ y])
is coNP-complete. Hence, the result follows. 2

8.3 Horn But Not Negative Horn Relations

We start with some representation lemmas proved by Schaefer’s technique.

Lemma 8.9 Let R be a Boolean relation which is Horn, but not dual Horn. Then we can construct
the relation [¬x ∨ ¬y] from R by variable identification and constant substitution.

Proof: If R is Horn, but not dual Horn, then there exist two vectors a, b ∈ R, such that a ∨ b /∈ R
and a ∧ b ∈ R. Construct the variable sets Vij = {x | a(x) = i, b(x) = j}. Construct the constraint
Q(x, y) = R[0/V00, x/V01, y/V10, 1/V11]. It is clear that the constraint Q(x, y) generates the relation
{00, 01, 10} = [¬x ∨ ¬y]. 2

Lemma 8.10 Let R be a Boolean relation which is Horn, but not negative Horn. Then we can
construct the relation [¬x ∨ y] from R by variable identification and constant substitution.

Proof: If R is Horn but not negative Horn, then there exist three vectors a, b, c ∈ R, such that
a∧ b ∈ R, a∧ c ∈ R, b∧ c ∈ R, and a∧ b∧ c ∈ R, but a∧ (b∨¬c) /∈ R, what also implies b∨¬c /∈ R.
Indeed, because x ∧ (y ∨ ¬z) is the basis of the clone S12 corresponding to negative Horn relations
iS12 and Horn relations are closed under conjunction, we must have a ∧ (b ∨ ¬c) /∈ R. Since a ∈ R
holds and R is Horn (i.e., it is closed under conjunction), we must have (b∨¬c) /∈ R, otherwise we
would have a ∧ (b ∨ ¬c) ∈ R. Construct the variable sets Vijk = {x | a(x) = i, b(x) = j, c(x) = k}.
Construct the constraint

Q(x, y) = R[0/V000, 0/V001, 0/V010, 0/V011, x/V100, y/V101, x/V110, 1/V111].

It can be easily verified that the constraint Q(x, y) generates the relation {00, 01, 11} = [¬x∨y]. 2
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Proposition 8.11 cmininf(S) for all sets S which are Horn, but neither dual Horn, nor negative
Horn, are coNP-complete.

Proof: Since S is Horn, but not dual Horn, there exists a relation R1 ∈ 〈S〉∄ with the same
properties according to Lemma 7.1. From R1 we can produce the relation [¬x ∨ ¬y] according
Lemma 8.9. Since S is Horn but not negative Horn, there exists a relation R2 ∈ 〈S〉∄ with this
property. From R2 we can produce the relation [¬x ∨ y] according to Lemma 8.10. Hence, we can
produce both relations [¬x∨¬y] and [¬x∨ y] from S. Cadoli and Lenzerini proved in [6] (case hk

in their notation) that cmininf(S) for S = {[¬x ∨ ¬y], [¬x ∨ y]} is coNP-complete. 2

8.4 Affine Relations

We need another representation lemma proved by the usual Schaefer technique.

Lemma 8.12 If S neither Horn nor dual Horn then we can construct the relation [x 6≡ y] from S
by conjunction and variable identification.

Proof: Since S is neither Horn nor dual Horn, there exists a relation R ∈ 〈S〉∄ with the same
properties according to Lemma 7.1. Moreover according to Lemma 7.2, R contains two tuples
a, b ∈ R such that a∧b /∈ R and a∨b /∈ R. Construct the variable sets Vij = {x | a(x) = i, b(x) = j}.
Construct the constraint Q(x, y) = R[0/V00, x/V01, y/V10, 1/V11]. It is clear that the constraint
Q(x, y) generates the relation {01, 10} = [x 6≡ y]. 2

We need to investigate a special property of incomparable relations.

Lemma 8.13 Given an irredundant affine relation R which is not incomparable, then any two
comparable tuples a < b in R must differ in at least two positions. Moreover, there must be a third
tuple c which is not constant on the positions where a and b differ.

Proof: We claim that the existence two comparable tuples a < b differing in just one position
implies the relation R to be redundant. Denote by i the coordinate on which a and b differ. For
any tuple c in R we construct the tuple c′ = a+b+c, which is identical to c except that c′[i] = ¬c[i].
Since R is affine, the tuple c′ must be in the relation. Hence, R is redundant since it is of the form
Q×{0, 1}. Thus in any irredundant relation any two comparable tuples must differ in at least two
positions.

Now let a and b differ on at least two positions, say i and j. If all tuples c ∈ R are constant on
the positions i and j where a and b differ, i.e., c[i] = c[j] for all c ∈ R, then R is again redundant
because in particular the columns i and j are identical. 2

Proposition 8.14 cmininf(S) is coNP-hard for each set of relations S, which is affine but neither
incomparable nor other Schaefer.

Proof: By taking Cartesian products of relations in S, there exists a single relation R in 〈S〉∄
which is affine, but neither incomparable, nor bijunctive, nor Horn, nor dual Horn, according to
Lemma 7.1. Since R is not incomparable, there exist two tuples a and b satisfying the condition
a < b. Without loss of generality we can assume that a and b are closest possible, i.e., there is no
tuple t for which a < t < b holds. By Lemma 8.13 we know that a and b differ in at least two
positions, and that there is a third tuple c not constant on the coordinates on which a and b differ.
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Since R is neither Horn nor dual Horn, we can assume by taking a Cartesian product of R with
itself, that c satisfies the conditions a ∧ c /∈ R, b ∧ c /∈ R, a ∨ c /∈ R, and b ∨ c /∈ R. Form the
Schaefer-style variable identification on R based on the tuples a, b, c. Note that since a < b holds, the
variables V100 and V101 will not appear. Thus we get the relation R[V000, V001, V010, V011, V110, V111].
It can be checked that the variables V001, V010, V011, V110 must all appear. Observe that if V001 does
not appear, then b ∨ c = b ∈ R which is a contradiction. Similarly, if V110 does not appear, then
a∧c = a ∈ R which is a contradiction. Moreover, V010 and V011 must appear since c is not constant
on the coordinates where a and b differ.

Since R is affine, it also contains the tuple d = a + b + c = 011001. Moreover, R does not
contain the tuple t = maj(a, b, c) = 000111 since this tuple satisfies the condition a < t < b.
We add the constraint (V110 6≡ V001) ∧ (V000 = 0) ∧ (V111 = 1) to R[V000, V001, V010, V011, V110, V111].
This addition is allowed following Theorem 4.3 and Lemma 8.12. The resulting constraint contains
the tuples 000011, 001111, 010101, 011001, but it does not contain the tuple 000111. There are
only three undetermined variables so there can be at most 8 tuples satisfying the affine constraint.
Moreover, since the constraint is affine the number of tuples satisfying the constraint is a power
of 2. Therefore, since 000111 is not satisfying the constraint, we have that

P (V000, V001, V010, V011, V110, V111)

= R[V001, V010, V011, V110] ∧ (V110 6≡ V001) ∧ (V000 = 0) ∧ (V111 = 1)

= (V001 + V010 + V011 = 0) ∧ (V110 + V001 = 1) ∧ (V000 = 0) ∧ (V111 = 1).

The problem cmininf(P ) for the relation P , generated by P (V000, V001, V010, V011, V110, V111), is
coNP-hard by Lemma 6.12. 2

8.5 Bijunctive Relations

Lemma 8.15 minext(R) for R = [(x ∨ y) ∧ (x 6≡ z)] is NP-complete.

Proof: The membership in NP is clear, we focus on the NP-hardness proof by means of a reduction
from 3sat. Suppose ϕ(x1, . . . , xn) = c1 ∧ · · · ∧ ck is a 3sat formula. Associate the variable yi with
the clause ci for i = 1, . . . , k. For each clause ci = l1i ∨ l

2
i ∨ l

3
i we add the following three formulas

(yi ∨ v
1
i ) ∧ (v1

i 6≡ v̄1
i ), (yi ∨ v

2
i ) ∧ (v2

i 6≡ v̄2
i ), (yi ∨ v

3
i ) ∧ (v3

i 6≡ v̄3
i ),

to ϕ′, where

vj
i =







x if lji = ¬x,

x′ if lji = x.
v̄j
i =







x′ if lji = ¬x,

x if lji = x.

Claim: The partial assignment s(yi) = 1 for each i = 1, . . . , k can be extended to a minimal
assignment of ϕ′ if and only if ϕ is satisfiable.

Let ϕ be satisfiable. Every clause ci evaluates to 1. For each clause ci there exists a j, such
that lji = 1. Then vj

i = 0 which implies yi = 1. Moreover, since vj
i 6≡ v̄j

i holds, every satisfying
assignment to ϕ′ is incomparable, hence minimal.

Let ϕ be unsatisfiable. Then there exists a falsified clause ci, i.e., l1i = l2i = l3i = 0, which implies
v1
i = v2

i = v3
i = 1. Therefore there exists a satisfying assignment m of ϕ′ with m(yi) = 0. hence

s(yi) = 1 for i = 1, . . . , k cannot be extended to a minimal solution. 2
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We need the following result from Jeavons et al. [17], based on a previous algebraic result of
Baker and Pixley [1], stating that it is sufficient to consider binary relations when we consider
bijunctive constraint languages.

Proposition 8.16 (Jeavons et al. [17]) Given a n-ary bijunctive constraint R(x1, . . . , xn) then
it is equivalent to

∧

1≤i≤j Rij(xi, xj) where Rij is the projection of the relation R to the coordinates i
and j.

Proposition 8.18 in the sequel is introduced already in this section concerning the cmininf

problem and not in Section 9. The reason is that the complexity result for mininf immediately
carries over to cmininf, but we do not want to present the same proof twice. We need first
a supporting lemma, which explains how to force variables to take constant values by means of
pinning.

Lemma 8.17 If S is bijunctive but not other Schaefer, then we can construct by conjunction and
variable identification the binary relation R01 = {01}.

Proof: The proof is almost the same as of Lemma 5.24 in [8]. Observe that S is neither 0-valid,
nor 1-valid, nor complementive since this (according to Post’s lattice) would imply that S is Horn,
dual Horn, and affine, respectively.

Consider a non-0-valid relation Rn0 ∈ S. If Rn0 is 1-valid, then Rn0(x, . . . , x) = T (x). Sim-
ilarly if a non-1-valid relation Rn1 is 0-valid then we can implement F (x) from Rn1 by variable
identification. Hence, we can implement R01(x, y) by F (x) ∧ T (y).

If Rn0 is neither 0-valid nor complementive, nor 1-valid, then 0 · · · 0 /∈ Rn0, 1 · · · 1 /∈ Rn0, and
there exists a tuple s ∈ Rn0 such that ¬s /∈ Rn0, where ¬s denotes the complement of s. Define
I0(s) = {i | s[i] = 0} and I1(s) = {i | s[i] = 1}. Form the constraint Rn0(xi, . . . , xj), where
xi, . . . , xj ∈ {x0, x1}, by placing x0 at the positions in I0(s) and x1 at the positions in I1(s). Note
that I0(s) and I1(s) are both non-empty since Rn0 is neither 0-valid nor 1-valid. Hence, we have
Rn0(xi, . . . , xj) = R01(x0, x1).

Finally, if Rn0 ∈ S is complementive but neither 0-valid nor 1-valid, then there must be a relation
Rnc ∈ S which is not complementive, since a bijunctive and complementive relations is also affine,
therefore also 0- and 1-valid. Hence, there exists a tuple s ∈ Rnc such that ¬s /∈ Rnc. Form the
constraintRn10(x0, x1) = Rnc(xi, . . . , xj) (where xi, . . . , xj ∈ {x0, x1}) by placing x0 at the positions
in I0(s) and x1 at the positions in I1(s). We have that 01 ∈ Rn10 and 10 /∈ Rn10. Consider again
Rn0 and a tuple s ∈ Rn0, then (x0 6≡ x1) = Rn0(xi, . . . , xj) where xi, . . . , xj ∈ {x0, x1}, x0 occurs
at the positions in I0(s), and x1 at the positions in I1(s). We can again implement the constraint
R01(x0, x1) = (x0 6≡ x1) ∧Rn10(x0, x1). 2

Proposition 8.18 Let N = {[¬x ∨ ¬y], [x 6≡ y]}. For each set of relations S, which is bijunctive,
but neither other Schaefer, nor a subset of 〈N〉∄, mininf(S) is coNP-complete.

Proof: Let R be the Cartesian product of all relations in S. Obviously, R is bijunctive but neither
Horn, nor dual Horn, nor affine, nor a subset of 〈N〉∄. Let ϕ be the conjunction of binary constraints
generating the relation R, produced according to Proposition 8.16.

There must be a clause (ℓp ∨ ℓ) ∈ ϕ with at least one positive literal, say ℓp, otherwise we would
have [ϕ] ∈ 〈N〉∄. If ℓ is a negative literal, then ℓp must not occur in a 6≡ constraint, otherwise
we would again have [ϕ] ∈ 〈N〉∄. If both ℓp and ℓ are positive, then ℓp or ℓ must not occur in a
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6≡ constraint, otherwise we would again have [ϕ] ∈ 〈N〉∄. In all cases, this is because we have the
identity (ℓp ∨ ℓ)∧ (ℓp 6≡ x) = (¬x∨ ℓ)∧ (ℓp 6≡ x). Moreover, the literals ℓp and ℓ cannot be assigned
constant values. Indeed, if ϕ = ϕ′ ∧ (ℓp ∨ ℓ) |= ¬ℓp holds for a formula ϕ′ with [ϕ′] ∈ 〈N〉∄, then ϕ
is equivalent to ϕ′ ∧ (¬ℓp ∨ ¬ℓp) ∧ (ℓp 6≡ ℓ), implying [ϕ] ∈ 〈N〉∄. If ϕ = ϕ′ ∧ (ℓp ∨ ℓ) |= ℓp holds
then ϕ is equivalent to ϕ′, implying again [ϕ] ∈ 〈N〉∄.

Hence, we are in the situation (ℓp ∨ ℓ) ∈ ϕ and ℓp is positive and it does not occur in any
6≡ constraint. Two cases emerge depending on whether ℓ appears in a 6≡ constraint. For the rest of
the proof we focus on the case where ℓ appears in a 6≡ constraint. The other case can be handled in
the same way with only minor and obvious modifications. Assume that ℓp = x, Var(ℓ) = y, and y
occurs in a 6≡ constraint together with z, i.e., that (x∨ y)∧ (y 6≡ z) ∈ ϕ, or (x∨¬y)∧ (y 6≡ z) ∈ ϕ.
Without loss of generality we assume the former case since (x ∨ ¬y) ∧ (y 6≡ z) = (x ∨ z) ∧ (y 6≡ z).

Our goal is to produce the constraint (x ∨ y) ∧ (y 6≡ z) ∧ R01(v, w) from ϕ by conjunction and
variable identification. It is clear that both aforementioned constraints belong to 〈S〉∄, since we
can produce from S the constraint R01(x0, x1) following Lemma 8.17.

Simplify ϕ by identifying all variables x1, x2 such that (x1 = x2) ∈ ϕ, then remove all equality
constraints from ϕ. Form the sets of variables V0 = {v | ϕ |= ¬v} and V1 = {w | ϕ |= w}.
Remove from ϕ all clauses containing variables in V0∪V1, then add the constraint R01(V0, V1) to ϕ.
Obviously, this transformation of ϕ does not change the fact that the projection of ϕ onto {x, y}
is equivalent to (x ∨ y), whereas the projection of ϕ onto {y, z} is equivalent to (y 6≡ z). Note
that there can be no (x1 = x2) ∈ ϕ where {x1, x2} ⊆ {x, y, z}. In the same manner, we must have
{x, y, z} ∩ V0 = ∅ and {x, y, z} ∩ V1 = ∅.

Continue simplifying the formula ϕ by eliminating all (x1 6≡ x2) constraints, except the one
(y 6≡ z), by replacing x1 by ¬x2, as well as ¬x1 by x2, throughout the formula. Denote the
resulting formula by ϕ′. Since x does not occur in any 6≡ constraint and neither y nor z occur
in any other 6≡ constraint except in (y 6≡ z), otherwise there would have to be some (x1 = x2)
constraint still left, we have (x ∨ y) ∧ (y 6≡ z) ∈ ϕ′.

Recall that resolution between two clauses (c ∨ v) and (¬v ∨ c′) produces the new clause
(c ∨ c′) and discards the two previous clauses. Note that resolution on binary clauses produces
a binary clause. For any variable xi /∈ {x, y, z} occurring both positively and negatively in ϕ′,
apply resolution to get a formula, where every variable not in {x, y, z} only occurs either posi-
tively or negatively, but not both. Denote the resulting formula by ϕ′′. Form the variable sets
V ′′

0 = {v | v only occurs negatively in ϕ′′} and V ′′
1 = {w | w only occurs positively in ϕ′′}. Discard

from ϕ′′ the clauses containing variables from V ′′
0 ∪ V ′′

1 and add the constraint R01(V
′′
0 , V

′′
1 ) to the

formula.
Hence using only conjunction and variable identification, we can implement the constraint

(x ∨ y) ∧ (y 6≡ z) ∧R01(v, w) from S. Using Lemma 8.15 we obtain the desired coNP-completeness
result. 2

8.6 Main Result

We put together all results in this section and obtain the following trichotomy result for minimal
inference without free variables but with constants.

Theorem 8.19 (Trichotomy of CMININF) Let S be a finite nonempty set of Boolean relations
and S∗ the corresponding 1-valid restriction. If every relation in S is both Horn and dual Horn,
or negative Horn, or Schaefer and incomparable, or a subset of the weak co-clone 〈N〉∄, where
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N = {[¬x∨¬y], [x 6≡ y]}, then cmininf(S) is decidable in polynomial time. Else if S∗ is Schaefer,
then cmininf(S) is coNP-complete. Otherwise, cmininf(S) is Π2P-complete.

Proof: The parts concerning Π2P-completeness and membership in coNP follow from the di-
chotomy theorem due to Kirousis and Kolaitis [21]. As for tractability, the fact that cmininf(S) is
tractable when every relation in S is both Horn and dual Horn, or negative Horn, follows directly
from the corresponding tractability results for gmininf proved in [6], and in Proposition 5.4, re-
spectively. Tractability of mininf(S) for S being Schaefer and incomparable, or a subset of 〈N〉∄,
is proved in Propositions 8.4, and 8.6, respectively. The coNP-hardness for cmininf(S) when S is
not Schaefer, and S∗ is Schaefer, is proved in Proposition 8.2.

Hence, what remains to be done is to prove coNP-hardness for all sets of relations S that do
not fall into one of the tractable classes when S is dual Horn, Horn, affine, or bijunctive. This is
done in Sections 8.2, 8.3, 8.4, and 8.5, respectively, by Propositions 8.8, 8.11, 8.14, and 8.18. 2

9 Minimal Inference Without Free Variables Nor Constants (MIN-
INF)

We want to derive in this section a complete characterization of complexity for the mininf problem,
which is the most challenging among the considered minimal inference problems. It requires all
variables of ϕ in a mininf instance ϕ |=min c to be minimized. The difficulty of the problem
originates in the impossibility to use the Galois correspondence or the possibility to substitute
logical constants for variables in the relations. In fact, mininf is the most difficult problem to
analyse among all four cases of minimal inference. mininf was listed as one of the important
open problems (Question 4.1) during the International Workshop on Mathematics of Constraint
Satisfaction held in Oxford in March 2006 [27].

Many results for mininf were already presented in previous sections, since they represent neces-
sary stepping stones to prove other complexity results for the three previously considered variants of
minimal inference. Recall also that mininf is a special case of gmininf, vmininf, or cmininf with
the supplementary condition Q = ∅ and Z = ∅. Hence a tractability result for the more general case
of minimal inference, namely Proposition 5.3, Proposition 5.4, Proposition 5.5, Proposition 6.15,
Proposition 6.16, and Proposition 8.4, propagates.

We use the same two phase approach as in the previous section, considering first non-Schaefer
relations S, where we proceed with a sharpening of a result from Kirousis and Kolaitis [21].

Proposition 9.1 Let S be a non-Schaefer and non-0-valid set of Boolean relations, with S∗ being
the corresponding 1-valid restriction. If S∗ is Schaefer, then mininf(S) is coNP-complete, otherwise
it is Π2P-complete.

Proof: The Π2P-completeness part and the fact that mininf(S) is in coNP when S∗ is Schaefer is
proved in [21, Theorem 3.10]. Hence, what remains to be proved is that mininf(S) is coNP-hard
when S∗ is Schaefer. First note that the case where S is non-Schaefer and non-0-valid but 1-valid
is known to be Π2P-complete by Theorem 3.10 in [21], hence we can assume that S is non-1-valid.
We give a reduction from the coNP-complete unsatisfiability problem unsat(S) to mininf(S).
Let ϕ be a conjunction of constraints over S. Let R(x1, x2, . . . , xn) be a constraint build over a
relation R in S where the variables x1, . . . , xn do not occur in ϕ. Let m be a minimal model of
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R(x1, x2, . . . , xn). We construct the clause to be inferred ψ as follows: If m(xi) = 1 (m(xi) = 0)
then add ¬xi (xi) to ψ for 1 ≤ i ≤ n. Then ϕ is unsatisfiable if and only if ψ can be minimally
inferred from ϕ ∧R(x1, x2, . . . , xn). 2

Consider now S to be Schaefer or 0-valid. Tractability of mininf(S) for S being 0-valid is trivial
and the polynomial-time decidability of mininf(S) for S being Horn follows from the fact that a
satisfiable Horn formula has a unique minimal model computable in polynomial time. In the rest
of the paper we investigate the other cases for which mininf(S) is in coNP, namely when S is dual
Horn, bijunctive, or affine.

9.1 Affine Relations

We need first a representation lemma proved by Schaefer’s technique.

Lemma 9.2 Let R be a Boolean relation which is affine and 1-valid, but neither 0-valid, nor other
Schaefer. Then we can construct the relation [(x + y + z = 1) ∧ (w = 1)] from R by conjunction
and variable identification.

Proof: Since R is not Horn, there exist two vectors a, b ∈ R, such that a ∧ b /∈ R. Construct the
variable sets Vij = {x ∈ V | a(x) = i, b(x) = j}. Identify the variables in each set Vij and construct
the relation R′ generated by the constraint R[V00, V01, V10, V11]. It can be easily seen that the
vectors 0011, 0101, and 1111 belong to R′, whereas 0000 /∈ R′ (not 0-valid) and 0001 /∈ R′ (not
Horn). Since R′ is affine, we have 0011 + 0101 + 1111 = 1001 ∈ R′.

Let m,m′ ∈ R′ and m′′ /∈ R′. Then also m+m′+m′′ /∈ R′, since otherwise from the membership
of m, m′, and m+m′+m′′ in R′ follows that (m+m′+m′′)+m+m′ = m′′ ∈ R′, because R′ is affine.
Using this result, from 0011, 0101 ∈ R′ and 0001 /∈ R′ follows 0110 /∈ R′. From 0101, 1111 ∈ R′

and 0001 /∈ R′ follows 1011 /∈ R′. Finally from 0011, 1111 ∈ R′ and 0001 /∈ R′ follows 1101 /∈ R′.
We can force the variable V11 to take the value 1 by the constraint R′(V11, V11, V11, V11), since R
as well as R′ are both 1-valid but not 0-valid. Hence, the constraint R′(x, y, z, w) ∧ R′(w,w,w,w)
generates the relation [(x+ y + z = 1) ∧ (w = 1)] = {0011, 0101, 1001, 1111}. 2

Proposition 9.3 mininf(S) is coNP-complete for each set of relations S which is affine and 1-
valid, but neither 0-valid, nor other Schaefer.

Proof: We can construct a relation R which is affine and 1-valid, but not 0-valid, not Horn,
not dual Horn, nor bijunctive, by Cartesian product of relations from S. The rest follows from
Lemma 9.2, Lemma 6.13, and from the relationship between minext and mininf. 2

We need a supporting lemma explaining in the context of affine constraint languages how to
force variables to take constant values.

Lemma 9.4 If S is neither complementive nor 0-valid nor 1-valid, then the relation R01 = {01}
can be constructed from S by conjunction and variable identification.

Proof: We can assume the existence of a relation R which is neither complementive nor 0-valid
nor 1-valid by taking Cartesian products of relations in S according to Lemma 7.1. Take a tuple
a ∈ R such that ¬a /∈ R (since R is not complementive) and perform Schaefer’s construction on a,
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i.e., construct the relation Q generated by the constraint R[V0, V1]. Obviously 01 ∈ Q holds, and
neither 00 nor 11 is in Q (because R is neither 0-valid nor 1-valid). Moreover 10 /∈ Q holds since
¬a /∈ R. Thus we have constructed the desired relation Q = {01}. 2

Proposition 9.5 mininf(S) is coNP-hard for each set of relations S, which is affine, but neither
incomparable, nor other Schaefer, nor 0-valid, nor 1-valid, nor complementive.

Proof: By Lemma 9.4 we know that we have access to the constraintR01(x, y), based on the relation
R01 = {01}, forcing the variables x and y to take constant values. Since S is neither Horn nor dual
Horn, by taking Cartesian products we can assume that there is a relation N ∈ 〈S〉 and two tuples
a, b ∈ N , such that a∧ b /∈ N and a∨ b /∈ N . Use Schaefer’s variable identification on a and b to get
the relation N [V00, V01, V10, V11]. Now we need to impose the constant 0 on V00 and 1 on V11, using
the relation R01. We construct the constraint N(z, x, y, w)∧R01(z, w) = (x 6≡ y)∧(z = 0)∧(w = 1)
by conjunction and variable identification. The rest of the proof is totally identical to that of
Proposition 8.14. 2

We need a representation lemma for complementive relations and a complexity result for a
minimal inference problem upon a particular relation R which is both affine and complementive.

Lemma 9.6 If S is complementive and neither 0-valid nor 1-valid, then we can construct [x 6≡ y]
from S by conjunction and variable identification.

Proof: We can assume the existence of a relation R by taking Cartesian products according to
Lemma 7.1, such that R is neither 0-valid nor 1-valid. Take two tuples a, b ∈ R such that ¬a = b.
Perform Schaefer’s construction R[V00, V01, V10, V11] on a and b. Obviously the variables V00 and V11

do not appear since a is the complement of b. Hence we have the binary relation R[V01, V10]
containing the tuples 01 and 10, but not the tuples 11 and 00 (since otherwise R would be 1-valid
and 0-valid, respectively). Hence the relation generated by the constraint R[V01, V10] is {01, 10} =
[x 6≡ y]. 2

Lemma 9.7 minext(R) is NP-complete for R = [(x+ y+ z+w = 0)∧ (x+ u = 1)∧ (y+ v = 1)].

Proof: NP-membership is clear, we focus on the NP-hardness proof by a reduction from nae3sat

(not-all-equal 3sat). Suppose ϕ = c1 ∧ · · · ∧ ck is a not-all-equal 3sat formula with variables
x1, . . . , xn and clauses ci = l1i ∨ l2i ∨ l3i . We construct a formula ϕ′ as the conjunction of the
following equations for each clause ci = l1i ∨ l

2
i ∨ l

3
i :

(z3i−2 + v1
i + v2

i + yi = 0) ∧ (v1
i + u1

i = 1) ∧ (v2
i + u2

i = 1),
(z3i−1 + v2

i + v3
i + yi = 0) ∧ (v2

i + u2
i = 1) ∧ (v3

i + u3
i = 1),

(z3i + v3
i + v1

i + yi = 0) ∧ (v3
i + u3

i = 1) ∧ (v1
i + u1

i = 1).

where

vj
i =







xp if lji = xp,

x′p if lji = ¬xp.
and uj

i =







x′p if vj
i = xp,

xp if vj
i = x′p.

The variable vj
i is a placeholder for the literal lji , whereas uj

i is the negation of vj
i .
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Claim: The formula ϕ is satisfiable if and only if the assignment s(yi) = 1 for all i = 1, . . . , k
of ϕ′ has a minimal extension.

Let ϕ be not-all-equal satisfiable. Then there exists a not-all-equal satisfying assignment m
of the formula ϕ. Since every clause ci is not-all-equal satisfied, for each i there must be a, b ∈
{1, 2, 3} such that m(lai ) 6= m(lbi ). Let m̄ be an extension of m that satisfies ϕ′. Following the
construction of ϕ′, we must have m̄(va

i ) + m̄(vb
i ) = 1. Then there are two possibilities to get a

minimal assignment m̄:
1. When we set m̄(z3i−p) = 1 and m̄(yi) = 0, we get an uninteresting assignment.
2. When we set m̄(z3i−p) = 0 and m̄(yi) = 1, we get an assignment which is an extension of the

assignment s(yi) = 1 for all i = 1, . . . , k.
These two possible assignments are clearly incomparable and no value can be changed from 1 to 0
to get another satisfying assignment of ϕ′. Therefore the assignment m̄ from the second case is
minimal.

Let ϕ be not-all-equal unsatisfiable. Then for each assignment m there must always be a
clause ci which literals are assigned the same values, i.e., m(l1i ) = m(l2i ) = m(l3i ) = 0 or m(l1i ) =
m(l2i ) = m(l3i ) = 1. Let m̄ be an extension of m that satisfies the formula ϕ′. Following the
construction of ϕ′, we have m̄(v1

i ) + m̄(v2
i ) = m̄(v2

i ) + m̄(v3
i ) = m̄(v3

i ) + m̄(v1
i ) = 0. Then we can

set m̄(z3i−2) = m̄(z3i−1) = m̄(z3i) = m̄(yi) = 0 to produce a minimal assignment. This implies
that the assignment s(yi) = 1 for all i cannot be extended to a minimal one. 2

Proposition 9.8 mininf(S) is coNP-hard for each set of relations S, which is affine and comple-
mentive, but neither incomparable, nor other Schaefer, nor 0-valid, nor 1-valid.

Proof: By taking Cartesian products of relations in S there exists a relation R in 〈S〉∄, according
to Lemma 7.1, which is affine, but neither incomparable, nor bijunctive, nor Horn, nor dual-Horn.
Since R is not incomparable there are two tuples a and b satisfying the condition a < b. Without
loss of generality we can assume that a and b are closest, i.e., there is no tuple t satisfying a < t < b.
By Lemma 8.13 we know that a and b differ in at least two positions and that there exists a third
tuple c which is not constant on the coordinates where a and b differ.

Since R is neither Horn, nor dual-Horn we can assume, by taking a Cartesian products of R
with itself, that c satisfies the conditions a ∧ c /∈ R, b ∧ c /∈ R, a ∨ c /∈ R, and b ∨ c /∈ R. Form the
Schaefer style implementation on R based on the tuples a, b, c. Note that since a < b holds, the
variables V100 and V101 will not appear. Hence we get the relation R[V000, V001, V010, V011, V110, V111].
It can be checked that the variables V001, V010, V011, V110 must all appear. If V001 does not appear,
then b ∨ c = b ∈ R which is a contradiction. Similarly, if V110 does not appear, then a ∧ c = a ∈ R
which is a contradiction. Moreover, V010 and V011 must appear since c is not constant on the
coordinates where a and b differ.

Since R is affine, it must also contain the tuple d = a + b + c = 011001. Moreover, R does
not contain the tuple t = maj(a, b, c) = 000111 since this tuple satisfies a < t < b. Furthermore,
since R is complementive it also contains the tuples 100110, 111100 101010, 110000. Now, adding
the constraints V000 6≡ V111 and V110 6≡ V001, to which we have access according to Lemma 9.6,
we get the relation R[V000, V001, V010, V011, V110, V111] ∧ (V000 6≡ V111) ∧ (V110 6≡ V001). Since the
value of V110 is determined by V001 and vice versa, and the same for V000 and V111, there can
be at most 16 tuples satisfying the affine constraint. We already have 8 tuples that satisfy the
constraint and we know that the tuple 000111 does not satisfy the constraint. Since the constraint
is affine, the number of tuples satisfying the constraint must be a power of 2. The constraint
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R[V000, V001, V010, V011, V110, V111] ∧ (V000 6≡ V111) ∧ (V110 6≡ V001) generates the relation consisting
of the tuples {000011, 001111, 010101, 011001, 100110, 111100, 101010, 110000}. It is equivalent
to the constraint (V000 + V001 + V010 + V011 = 0) ∧ (V000 + V111 = 1) ∧ (V001 + V110 = 1), for which
the minimal inference problem is coNP-complete according to Lemma 9.7. 2

9.2 Dual Horn Relations

Proposition 9.9 mininf(S) is coNP-hard for each set of relations S, which is dual Horn, but
neither Horn, nor 0-valid, nor 1-valid.

Proof: Construct a relation R from S which is neither 0-valid nor 1-valid. Such a relation exists
by taking Cartesian products. Take a tuple a ∈ R and construct the relation R[V0, V1] on a. Both
variables V0 and V1 must appears since R is neither 0-valid nor 1-valid. Hence 01 ∈ R[V0, V1].
Neither 00 nor 11 is in R[V0, V1] since R is neither 0-valid nor 1-valid. Moreover, 10 is not in R,
since if it were then the fact that R is dual-Horn together with 01 ∈ R implies 11 ∈ R which we
have already ruled out. Thus R[V0, V1] generates the relation {01}.

Now construct from S a relation Q which is dual Horn, but not Horn. There must be two tuples
a, b ∈ Q, such that a∧ b /∈ Q and a∨ b ∈ Q. Construct the relation Q[V00, V01, V10, V11] on a and b.
Form the conjunction Q[V00, V01, V10, V11]∧R[V00, V11] forcing the variables V00 and V11 to take the
values 0 and 1, respectively. The constraint Q′(V00, V01, V10, V11) = Q[V00, V01, V10, V11]∧R[V00, V11]
is equal to (V01 ∨ V10) ∧ (V00 = 0) ∧ (V11 = 1). Cadoli and Lenzerini [6, Theorem 5] proved that
mininf([x∨y]) is coNP-complete, therefore also mininf(Q′) where Q′ = [(x∨y)∧(z = 0)∧(w = 1)]
is coNP-complete. 2

Lemma 9.10 mininf(R) is coNP-complete for R = [(x ∨ y) ∧ (¬z ∨ x) ∧ (¬z ∨ y)] and R =
[(x ∨ y) ∧ (¬z ∨ x)].

Proof: The coNP membership is clear, we focus on the hardness proof done by a simple reduction
from mininf([x ∨ y]). Every constraint (x ∨ y) in the mininf([x ∨ y]) instance is replaced by a
constraint (x∨ y)∧ (¬zi ∨ x)∧ (¬zi ∨ y) or (x∨ y)∧ (¬zi ∨ x), respectively, where the zi’s are fresh
variables (one for each new constraint). Note that all the zi’s must be 0 in all minimal models
of the new instance. Hence, there is an obvious one-to-one correspondence between the minimal
models of the old and new mininf instances. 2

Proposition 9.11 mininf(S) is coNP-hard for each set of relations S, which is dual-Horn and
1-valid, but neither 0-valid nor Horn.

Proof: We know that there is a relation R in 〈S〉∄ which is dual-Horn and 1-valid but not 0-
valid, constructed by taking Cartesian products. Now, do Schaefer’s construction on two tuples
a, b ∈ R such that a ∧ b /∈ R and a ∨ b ∈ R. Such tuples exist, since R is dual Horn, but not Horn.
This construction gives us the relation Q generated by the constraint R[V00, V01, V10, V11]. Since Q
is 1-valid but not 0-valid, we have access to the constraint (x = 1). Construct the conjunction
Q′(V00, V01, V10, V11) = Q(V00, V01, V10, V11) ∧ Q(V11, V11, V11, V11). Now, V01 and V10 both exists,
otherwise we would have a ∧ b ∈ R. Moreover, 0001 /∈ Q′ since a ∧ b = 0001. If V00 does not
exist then Q′ = [(x ∨ y) ∧ (z = 1)]. Cadoli and Lenzerini proved in [6] that mininf([x ∨ y]) is
coNP-complete, hence also mininf(Q′) is coNP-complete.

Assume now that V00 exists. We know that Q′ contains the tuples 1111, 0011, 0101, and 0111.
We now have to consider 5 cases according to the presence of the tuples 1001, 1011, and 1101:
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Case 1: Q′ = {1111, 0011, 0101, 0111} which is equal to [(y∨ z)∧ (¬x∨ y)∧ (¬x∨ z)∧ (w = 1)]
for which mininf is coNP-complete according to Lemma 9.10.

Case 2: Q′ contains the tuple 1001. Because Q′ is dual Horn, it must also contain the tuples
1011 and 1101. Since 0001 is not in the relation, we have constructed [(x ∨ y ∨ z) ∧ (w = 1)]. By
variable identification we can get the relation [(x∨ y)∧ (w = 1)] for which we already know mininf

to be coNP-complete. Hence we can assume further on that Q′ does not contain the tuple 1001.
Case 3: Q′ contains 1011. Then it is equal to [(y ∨ z) ∧ (¬x ∨ z) ∧ (w = 1)] for which mininf

is coNP-complete according to Lemma 9.10.
Case 4: Q′ contains 1101. Then it is equal to [(y ∨ z) ∧ (¬x ∨ y) ∧ (w = 1)] for which mininf

is coNP-complete according to Lemma 9.10.
Case 5: Q′ contains both tuples 1101 and 1011. Then we can construct the new constraint

Q′′(x, y, z, w) = Q′(x, y, z, w)∧Q(x, x, x, x) which is equivalent to (y∨ z)∧ (x = 1)∧ (w = 1). Since
we know that mininf([x ∨ y]) is coNP-complete, we also know that mininf(Q′′) is coNP-complete.

There are no more cases to consider, what terminates the proof. 2

9.3 Main Result

Putting together all previous propositions, we obtain the following trichotomy result for the minimal
inference problem.

Theorem 9.12 (Trichotomy of MININF) Let S be a finite nonempty set of Boolean relations
and S∗ the corresponding 1-valid restriction. If every relation in S is Horn, or 0-valid, or both
Schaefer and incomparable, or a subset of the weak co-clone 〈N〉∄ (where N = {[¬x∨¬y], [x 6≡ y]}),
then mininf(S) is decidable in polynomial time. Else if S∗ is Schaefer, then mininf(S) is coNP-
complete. Otherwise, mininf(S) is Π2P-complete.

Proof: The parts concerning Π2P-completeness and membership in coNP follow from the di-
chotomy theorem due to Kirousis and Kolaitis [21]. As for tractability, this is, as already explained,
trivial for S being Horn or 0-valid. Tractability of mininf(S) for S being Schaefer and incompara-
ble, or a subset of 〈N〉∄, is proved in Propositions 8.4, and 8.6, respectively. The coNP-hardness for
mininf(S) when S is neither Schaefer, nor 0-valid, and S∗ is Schaefer, is proved in Proposition 9.1.

Hence, what remains to be done is to prove coNP-hardness for all sets of relations S that do
not fall into one of the tractable classes when S is affine, dual Horn, or bijunctive. This is done
in Sections 9.1, 9.2, and 8.5, respectively. For S being affine, the analysis is divided into three
cases, depending on whether S is 1-valid (Proposition 9.3), complementive (Proposition 9.8), or
neither 1-valid nor complementive (Proposition 9.5). Similarly, the analysis for the dual Horn case is
divided into two parts depending on whether S is 1-valid (Proposition 9.11) or not (Proposition 9.9).
Finally, the case where S is bijunctive is treated in Proposition 8.18. 2

Checking whether a relation R is Schaefer can be done in polynomial time by testing for closure
under corresponding operations (see Table 3). Checking whether a relation is 0-valid or incom-
parable can be done in polynomial time by inspection. Checking whether R is a subset of 〈N〉∄
is more subtle, since we cannot use the Galois correspondence with polymorphisms, because 〈N〉∄
is not closed under existential quantification. Recall that 〈N〉∄ is the set of all relations that can
be expressed using relations from N , conjunction, and variable identification. However, we can
apply Proposition 8.16, since the inclusion R ⊆ 〈N〉∄ implies that R must be bijunctive. It is then
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sufficient to check that R is closed under majority and that all projections Rij of R are equal to
one of the relations [¬x ∨ ¬y] or [x 6≡ y]. This test can be performed in polynomial time.

10 Concluding Remarks

We have proved trichotomy theorems for the complexity of four variants of the generalized minimal
inference problem. This also covers the original minimal inference problem, where all variables of
the formula ϕ are being minimized. A careful reader certainly discovered that we rely on many
previous results, previously published by Eiter and Gottlob [13], Cadoli and Lenzerini [6], Kirousis
and Kolaitis [21], and finally by Nordh and Jonsson [25].

Our trichotomy result for mininf, presented in Theorem 9.12, finally settles with a positive
answer the trichotomy conjecture of Kirousis and Kolaitis formulated in [21] and also appearing
as one of the open problems (Question 4.1) during the International Workshop on Mathematics of
Constraint Satisfaction held in Oxford in March 2006 [27]. In the process we also strengthen and
give a much simplified proof of the main result from [11], which concerns the coNP-hardness of
mininf over affine relations.

Our proof techniques for the two variants with free variables (i.e., gmininf and vmininf) are
based on the well-known and powerful algebraic approach via Post’s lattice of co-clones. For the two
variants without free variables (i.e., cmininf and mininf) this approach provably does not work
since the complexity borderlines cuts through the co-clones. For these problems we instead refine
Schaefer’s approach via a particular type of implementations. There is one significant difference be-
tween Schaefer’s implementations and ours, namely we only use conjunction, variable identification,
and variable permutation (no existential quantification) in our implementations. The reason for not
allowing existential quantification in our implementations is that the structure of minimal models
of a formula is destroyed by existentially quantifying some variables. Moreover as manifested by
both the results in this paper and the results due to Kirousis and Kolaitis [21], the complexity of
cmininf and mininf is not preserved by implementations using existential quantification.

Our implementations could be interesting in their own right since they might be useful in
classifying the complexity of other problems where existential quantification does not preserve the
complexity. Note that Schaefer’s original implementations have indeed been reused many times
and for many different problems [8].

Another observation that we make is that our coNP-hardness proofs for cmininf and mininf

seems to require that the clause (query) to be minimally inferred can be arbitrary long (i.e., its
length is allowed to depend on the size of the knowledge base). This is in sharp contrast with
the Π2P-hardness proofs for cmininf and mininf proved by Kirousis and Kolaitis [21], where they
observe that a Π2P-hardness holds even when the clause to be inferred consists of two literals.

We have proved a trichotomy for the complexity of the minimal inference problem with un-
bounded queries. It is natural to ask if such a result can be obtained in the case of bounded
queries. Gottlob and Eiter [13] proved the Π2P-completeness of the minimal inference problem
in general already for queries with a single literal which was used by Kirousis and Kolaitis [21]
to obtain their dichotomy theorem. However, Cadoli and Lenzerini [6] showed for the bijunctive
case that the minimal inference problem is coNP-complete for unbounded queries, but it becomes
polynomial-time decidable when the query is restricted to a single literal. The same effect was
observed by Durand and Hermann in [11] for the affine case. Our coNP-hardness proofs for the
bijunctive, affine, and dual Horn cases are not valid for bounded queries. In fact, the bijunctive
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case is easily seen to be tractable for bounded queries. The result of [6], showing that there are
coNP-complete dual Horn minimal inference problems even for single literal queries, together with
the fact that there exist tractable bounded query dual Horn minimal inference problems, indicate
that the classification for bounded queries in the dual Horn case is more intricate.

The affine case might be more complicated to solve. It is easy to see that it corresponds to the
following problem over representable matroids: given a set S of t elements, find a circuit passing
through S. When t ≥ 2 is bounded, the complexity of this problem is widely open [18]. Notice
that the (simpler) problem restricted to graphs can be reduced to the t-disjoint path problem,
showed to be polynomial-time decidable after considerable effort [33]. Therefore the final answer
to complexity classification of the minimal inference problem with bounded queries still remains a
challenging open question.
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